Home
Class 12
MATHS
If X + Y = [{:(7, 0),(2,5):}] and X - Y ...

If X + Y = `[{:(7, 0),(2,5):}]` and X - Y = `[{:(3,0),(0,3):}]` , then

A

`X = [{:(5,0),(1,4):}], Y = [{:(2,0),(0,1):}]`

B

`X = [{:(5,0),(1,4):}], Y = [{:(2,0),(1,1):}]`

C

`X = [{:(2,1),(1,0):}], Y = [{:(1,2),(4,3):}]`

D

`X = [{:(5,4),(1,0):}], Y = [{:(2,3),(4,5):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we have two matrix equations: 1. \( X + Y = \begin{pmatrix} 7 & 0 \\ 2 & 5 \end{pmatrix} \) (Equation 1) 2. \( X - Y = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \) (Equation 2) We need to find the matrices \( X \) and \( Y \). ### Step 1: Add the two equations To eliminate \( Y \), we can add Equation 1 and Equation 2: \[ (X + Y) + (X - Y) = \begin{pmatrix} 7 & 0 \\ 2 & 5 \end{pmatrix} + \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] This simplifies to: \[ 2X = \begin{pmatrix} 7 + 3 & 0 + 0 \\ 2 + 0 & 5 + 3 \end{pmatrix} = \begin{pmatrix} 10 & 0 \\ 2 & 8 \end{pmatrix} \] ### Step 2: Solve for \( X \) Now, divide both sides by 2 to find \( X \): \[ X = \frac{1}{2} \begin{pmatrix} 10 & 0 \\ 2 & 8 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 1 & 4 \end{pmatrix} \] ### Step 3: Substitute \( X \) back to find \( Y \) Now that we have \( X \), we can substitute it back into either Equation 1 or Equation 2 to find \( Y \). Let's use Equation 1: \[ X + Y = \begin{pmatrix} 7 & 0 \\ 2 & 5 \end{pmatrix} \] Substituting \( X \): \[ \begin{pmatrix} 5 & 0 \\ 1 & 4 \end{pmatrix} + Y = \begin{pmatrix} 7 & 0 \\ 2 & 5 \end{pmatrix} \] ### Step 4: Solve for \( Y \) Now, isolate \( Y \): \[ Y = \begin{pmatrix} 7 & 0 \\ 2 & 5 \end{pmatrix} - \begin{pmatrix} 5 & 0 \\ 1 & 4 \end{pmatrix} \] Subtracting the matrices element-wise gives: \[ Y = \begin{pmatrix} 7 - 5 & 0 - 0 \\ 2 - 1 & 5 - 4 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \] ### Final Result Thus, the matrices \( X \) and \( Y \) are: \[ X = \begin{pmatrix} 5 & 0 \\ 1 & 4 \end{pmatrix}, \quad Y = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2: SINGLE OPTION CORRECT TYPE)|15 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3: ONE OR MORE THAN ONE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

Find X and Y ,if X+Y =[(7,0),(2,5)] and X-Y= [(3,0),(0,3)]

If 2 [{:(3, 4),(5,x):}] +[{:(1,y),(0,1):}] = [{:(7,0),(10,5):}] , then values of x and y are

Find X and Y if X+Y =[ [7,0], [2,5]] and X-Y = [[3,0],[2,3]]

If 2[{:(3,4),(5,x):}]+[{:(1,y),(0,1):}]=[{:(7,0),(10,5):}] , find (x-y).

If X+Y=[[7,0],[2,5]],X-Y=[[3,0],[0,3]] then Y is

(h) Find X and Y if X+Y= [[7,-2],[2,6]] ,X-Y= [[3,0],[2,3]]

Find X and Y, if (i) X+Y=[7 0 2 5] and X-Y=[3 0 0 3] (ii) 2X+3Y=[2 3 4 0] and 3X+2Y=[2-2-1 5]

I. 5x^(2) + 2x - 3 = 0" "II. 2y^(2) + 7y + 6 = 0