Home
Class 12
MATHS
If A = [{:(1),(-4),(3):}] and B = [-1, 2...

If A = `[{:(1),(-4),(3):}]` and B = [-1, 2, 1], then (AB)' is equal to

A

`[{:(-1, 4, -3),(2, - 8, 6),(1, - 4, 3):}] `

B

`[{:(-1, 2, 1),(4, - 8, -4),(-3, 6, 3):}] `

C

`[{:(1, 4, -3),(2, - 8, 6),(1, 4, 3):}] `

D

`[{:(-1, 4, -3),(2, 8, 6),(1, - 4, 3):}] `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product of matrices A and B, and then take the transpose of that product. Let's break down the steps: ### Step 1: Identify the matrices A and B Given: - Matrix \( A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix} \) (a column matrix of order 3x1) - Matrix \( B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix} \) (a row matrix of order 1x3) ### Step 2: Check the dimensions for multiplication Matrix \( A \) is of size 3x1 and matrix \( B \) is of size 1x3. The multiplication \( AB \) is possible because the number of columns in \( A \) (1) is equal to the number of rows in \( B \) (1). ### Step 3: Perform the matrix multiplication \( AB \) To find \( AB \), we multiply the column matrix \( A \) by the row matrix \( B \): \[ AB = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix} \begin{bmatrix} -1 & 2 & 1 \end{bmatrix} \] Calculating the product: \[ AB = \begin{bmatrix} 1 \cdot -1 & 1 \cdot 2 & 1 \cdot 1 \\ -4 \cdot -1 & -4 \cdot 2 & -4 \cdot 1 \\ 3 \cdot -1 & 3 \cdot 2 & 3 \cdot 1 \end{bmatrix} \] This results in: \[ AB = \begin{bmatrix} -1 & 2 & 1 \\ 4 & -8 & -4 \\ -3 & 6 & 3 \end{bmatrix} \] ### Step 4: Take the transpose of the product \( AB \) The transpose of a matrix is obtained by swapping its rows and columns. Therefore, the transpose \( (AB)' \) is: \[ (AB)' = \begin{bmatrix} -1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3 \end{bmatrix} \] ### Final Answer Thus, the result of \( (AB)' \) is: \[ (AB)' = \begin{bmatrix} -1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3 \end{bmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2: SINGLE OPTION CORRECT TYPE)|15 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3: ONE OR MORE THAN ONE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,-2,1),(2,1,3)] and B=[(2,1),(3,2),(1,1)] then (AB)' is equal to

A=[[1],[-4],[3]] and B =[ -1 2 1 ] then (AB)^T=

If the matrices A = [{:(2,1,3),(4,1,0):}] and B = [{:(1,-1),(0,2),(5,0):}] , then (AB)^T will be

If A = [(1,2),(3,-2),(-1,0)]and B = [(1,3,2),(4,-1,3)] then find the order of AB.

If A=[(2,1,3),(4,1,0)] and B=[(1,-1),(0,2),(5,0)] , then AB will be

If A = [1,-2,3] B = [(2),(-3),(-1)] then AB is equal to

If A=[{:(2,-1),(3,4),(1,5):}]" and "B=[{:(-1,3),(2,1):}] , find AB. Does BA exist?

If A=[{:(3,-1),(1,-3):}]" and B"=[{:(2,1),(-1,-2):}]," then show that" : (AB)^(-1)=B^(-1)A^(-1)

If A=[{:(2,3,-1),(1,4,2):}] and B=[{:(2,3),(4,5),(2,1):}] then AB and BA are defined and equal.

Let A=[(-4, -3, -3),(1, a, 1),(4, b, 3)] and A=A^(-1) , then a+2b is equal to