Home
Class 12
MATHS
If A = [a(ij)](2xx2), where a(ij) = ((i...

If A = `[a_(ij)]_(2xx2)`, where `a_(ij) = ((i + 2j)^(2))/(2 )` , then A is equal to

A

`[{:(9,25),(8, 18):}]`

B

`[{:(9//2,25//2),(8, 18):}]`

C

`[{:(9,25),(4, 9):}]`

D

`[{:(9//2,15//2),(4,9):}]`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2: SINGLE OPTION CORRECT TYPE)|15 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3: ONE OR MORE THAN ONE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….

If A=[a_(ij)]_(2xx2)" where "a_(ij)=2i+j," then :"A=

For 2x3 matrix A=[a_(ij)] whose elements are given by a_(ij)=((i+j)^(2))/(2) then A is equal to

If matrix A=[a_(ij)]_(2xx2^(,)) where a_(ij)=1" if "i!=j =0" if "i=j then A^(2) is equal to :

if A=[a_(ij)]_(2*2) where a_(ij)={i+j,i!=j and a_(ij)=i^(2)-2j,i=j then A^(-1) is equal to

Construct a matrix [a_(ij)]_(2xx2) where a_(ij)=i+2j

If matrix A=[a_(ij)]_(3xx2) and a_(ij)=(3i-2j)^(2) , then find matrix A.