Home
Class 12
MATHS
[1 x 1 ] [{:(1, 3,2),(2, 5, 1),(15, 3, 2...

[1 x 1 ] `[{:(1, 3,2),(2, 5, 1),(15, 3, 2):}] [{:(1),(2),(x):}]` = 0, if x =

A

`- 7 `

B

`-11`

C

`-2`

D

14

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the matrix multiplication, we will follow these steps: ### Step 1: Understand the matrices involved We have a 3x3 matrix \( A \) and a 3x1 matrix \( B \): \[ A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 2 \\ x \end{pmatrix} \] ### Step 2: Perform the matrix multiplication We need to multiply matrix \( A \) by matrix \( B \): \[ AB = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ x \end{pmatrix} \] The result will be a 3x1 matrix. We compute each entry in the resulting matrix: - First entry: \[ 1 \cdot 1 + 3 \cdot 2 + 2 \cdot x = 1 + 6 + 2x = 7 + 2x \] - Second entry: \[ 2 \cdot 1 + 5 \cdot 2 + 1 \cdot x = 2 + 10 + x = 12 + x \] - Third entry: \[ 15 \cdot 1 + 3 \cdot 2 + 2 \cdot x = 15 + 6 + 2x = 21 + 2x \] Thus, we have: \[ AB = \begin{pmatrix} 7 + 2x \\ 12 + x \\ 21 + 2x \end{pmatrix} \] ### Step 3: Set the resulting matrix equal to zero We want the resulting matrix to equal the zero matrix: \[ \begin{pmatrix} 7 + 2x \\ 12 + x \\ 21 + 2x \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \] This gives us three equations to solve: 1. \( 7 + 2x = 0 \) 2. \( 12 + x = 0 \) 3. \( 21 + 2x = 0 \) ### Step 4: Solve each equation 1. From \( 7 + 2x = 0 \): \[ 2x = -7 \implies x = -\frac{7}{2} \] 2. From \( 12 + x = 0 \): \[ x = -12 \] 3. From \( 21 + 2x = 0 \): \[ 2x = -21 \implies x = -\frac{21}{2} \] ### Step 5: Collect the solutions The values of \( x \) that satisfy the equations are: - \( x = -\frac{7}{2} \) - \( x = -12 \) - \( x = -\frac{21}{2} \) ### Final Result The values of \( x \) for which the matrix multiplication equals zero are: \[ x = -\frac{7}{2}, \quad x = -12, \quad x = -\frac{21}{2} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2: SINGLE OPTION CORRECT TYPE)|15 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3: ONE OR MORE THAN ONE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of x, if [1x1][{:(1,3,2),(2,5,1),(15,3,2):}][{:(1),(2),(x):}]=0

Find the value of x, if [1x1][{:(1,3,2),(2,5,1),(15,3,2):}][{:(1),(2),(x):}]=O.

If [{:(1, x, 1):}] [{:(1, 2,3),(0,5,1),(0,3,2):}] [{:(x), (1),(-2):}]=O, then x =

find x, if [x" "-5" "-1][{:(1,0,2),(0,2,1),(2,0,3):}][{:(x),(4),(1):}]=0

If [(1,x,1)][(1,3,2),(0,5,1),(0,3,2)][(x),(1),(-2)]=[0] then x is

If [[1,x,1]] xx [[1,3,2],[2,5,1],[15,3,2]] xx [[1],[2],[x]]=0, find the value of x

[{:(,x^(2)+x,-1),(,3,2):}]+[{:(,0,-1),(,-x+1,x):}]=[{:(,0,-2),(,5,1):}] then x is equalto-