Home
Class 12
MATHS
If matrix A=([a(i j)])(2xx2) , where a(i...

If matrix `A=([a_(i j)])_(2xx2)` , where `a_(i j)={1,\ if\ i!=j0,\ if\ i+j` , then `A^2` is equal to `I` (b) `A` (c) `O` (d) ` I`

A

I

B

A

C

O

D

`-I`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2: SINGLE OPTION CORRECT TYPE)|15 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3: ONE OR MORE THAN ONE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If matrix A=([a_(ij)])_(2xx2), where a_(ij)={1,quad if quad i!=j0,quad if i+j, then A^(2) is equal to I( b) A(c)O(d)I

If matrix A=[a_(ij)]_(2xx2^(,)) where a_(ij)=1" if "i!=j =0" if "i=j then A^(2) is equal to :

Construct a matrix [a_(ij)]_(2xx2) where a_(ij)=i+2j

If matrix A=[a_(ij)]_(2X2') where a_(ij)={[1,i!=j0,i=j]}, then A^(2) is equal to

Write down the matrix A=[a_(ij)]_(2xx3), where a_ij=2i-3j

if A=[a_(ij)]_(2*2) where a_(ij)={i+j,i!=j and a_(ij)=i^(2)-2j,i=j then A^(-1) is equal to

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….