Home
Class 12
MATHS
Let F (x) = [{:(cos x , -sin x , 0),(sin...

Let F (x) = `[{:(cos x , -sin x , 0),(sin x , cos x , 0),(0 , 0, 1):}]`, then

A

F (x). F(y) = F (x + y)

B

F(x)F(y) = F (x). F (y)

C

F(x) . F (y) = F(x - y )

D

F(x) . F(y) = F(y - x)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product of the matrices \( F(x) \) and \( F(y) \) and simplify the result. Let's go through the steps systematically. ### Step 1: Define the matrices Given: \[ F(x) = \begin{pmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \] To find \( F(y) \), we replace \( x \) with \( y \): \[ F(y) = \begin{pmatrix} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 2: Multiply \( F(x) \) and \( F(y) \) We need to compute the product \( F(x) \cdot F(y) \): \[ F(x) \cdot F(y) = \begin{pmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 3: Calculate the elements of the resulting matrix We will calculate each element of the resulting matrix using the row-by-column multiplication method. 1. **First Row:** - First column: \[ \cos x \cdot \cos y + (-\sin x) \cdot \sin y + 0 \cdot 0 = \cos x \cos y - \sin x \sin y \] - Second column: \[ \cos x \cdot (-\sin y) + (-\sin x) \cdot \cos y + 0 \cdot 0 = -\cos x \sin y - \sin x \cos y \] - Third column: \[ \cos x \cdot 0 + (-\sin x) \cdot 0 + 0 \cdot 1 = 0 \] 2. **Second Row:** - First column: \[ \sin x \cdot \cos y + \cos x \cdot \sin y + 0 \cdot 0 = \sin x \cos y + \cos x \sin y \] - Second column: \[ \sin x \cdot (-\sin y) + \cos x \cdot \cos y + 0 \cdot 0 = -\sin x \sin y + \cos x \cos y \] - Third column: \[ \sin x \cdot 0 + \cos x \cdot 0 + 0 \cdot 1 = 0 \] 3. **Third Row:** - First column: \[ 0 \cdot \cos y + 0 \cdot \sin y + 1 \cdot 0 = 0 \] - Second column: \[ 0 \cdot (-\sin y) + 0 \cdot \cos y + 1 \cdot 0 = 0 \] - Third column: \[ 0 \cdot 0 + 0 \cdot 0 + 1 \cdot 1 = 1 \] ### Step 4: Combine the results Putting all the calculated elements together, we get: \[ F(x) \cdot F(y) = \begin{pmatrix} \cos x \cos y - \sin x \sin y & -(\cos x \sin y + \sin x \cos y) & 0 \\ \sin x \cos y + \cos x \sin y & \cos x \cos y - \sin x \sin y & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 5: Simplify using trigonometric identities Using the trigonometric identities: - \( \cos(x+y) = \cos x \cos y - \sin x \sin y \) - \( \sin(x+y) = \sin x \cos y + \cos x \sin y \) We can rewrite the matrix as: \[ F(x) \cdot F(y) = \begin{pmatrix} \cos(x+y) & -\sin(x+y) & 0 \\ \sin(x+y) & \cos(x+y) & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Conclusion Thus, we conclude that: \[ F(x) \cdot F(y) = F(x+y) \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2: SINGLE OPTION CORRECT TYPE)|15 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3: ONE OR MORE THAN ONE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If f (x)={:((cos x,-sin x,0),(sin x,cos x,0),(0,0,1)):},"show that "(f(x))^(-1) = f(-x) .

If F(x) =[(cos x, -sin x,0),(sin x,cos x,0),(0,0,1)] show that F(x)F(y)=F(x+y)

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If F(x)=[[cos x,-sin x,0sin x,cos x,00,0,1]], then which of

(sin 3x + sin x) sin x + (cos 3x - cos x) cos x =0

if A=[[cos,sin x,0-sin x,cos x,00,0,1]]=f(x) then

"Let f(x) "=|{:(cos x" " sin x" " cos x),(cos 2x" "sin 2x" "2cos 2x),(cos 3x" "sin 3x" "3cos 3x):}|" Then find the vlue of "f'(0) and f'(pi//2).

"Let f(x) "=|{:(cos x" " sin x" " cos x),(cos 2x" "sin 2x" "2cos 2x),(cos 3x" "sin 3x" "3cos 3x):}|" Then find the vlue of "f'(0) and f'(pi//2).

Let F(x)=[cos x-sin x0sin x cos x0001] Show that F(x)F(y)=F(x+y)