Home
Class 12
MATHS
If A = [{:(0,3),(4,5):}] and kA = [{:(0,...

If A = `[{:(0,3),(4,5):}]` and kA = `[{:(0, 4a),(3b, 60):}]` , then value of k , a and b are respectively

A

12,19,16

B

9, 12 , 16

C

12, 9, 16

D

16, 9, 12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( k \), \( a \), and \( b \) given the matrices \( A \) and \( kA \). ### Given: - \( A = \begin{pmatrix} 0 & 3 \\ 4 & 5 \end{pmatrix} \) - \( kA = \begin{pmatrix} 0 & 4a \\ 3b & 60 \end{pmatrix} \) ### Step 1: Understanding the Matrix Multiplication When we multiply a matrix \( A \) by a scalar \( k \), each element of the matrix is multiplied by \( k \). Therefore, we can express \( kA \) as follows: \[ kA = k \begin{pmatrix} 0 & 3 \\ 4 & 5 \end{pmatrix} = \begin{pmatrix} k \cdot 0 & k \cdot 3 \\ k \cdot 4 & k \cdot 5 \end{pmatrix} = \begin{pmatrix} 0 & 3k \\ 4k & 5k \end{pmatrix} \] ### Step 2: Setting Up the Equations Now, we can equate the corresponding elements of \( kA \) and the given matrix \( kA \): 1. From the first element: \( k \cdot 0 = 0 \) (which is always true) 2. From the second element: \( 3k = 4a \) 3. From the third element: \( 4k = 3b \) 4. From the fourth element: \( 5k = 60 \) ### Step 3: Solving for \( k \) From the equation \( 5k = 60 \): \[ k = \frac{60}{5} = 12 \] ### Step 4: Substituting \( k \) to Find \( a \) Now, substitute \( k = 12 \) into the equation \( 3k = 4a \): \[ 3(12) = 4a \implies 36 = 4a \implies a = \frac{36}{4} = 9 \] ### Step 5: Substituting \( k \) to Find \( b \) Next, substitute \( k = 12 \) into the equation \( 4k = 3b \): \[ 4(12) = 3b \implies 48 = 3b \implies b = \frac{48}{3} = 16 \] ### Final Values Thus, the values of \( k \), \( a \), and \( b \) are: - \( k = 12 \) - \( a = 9 \) - \( b = 16 \) ### Conclusion The values of \( k \), \( a \), and \( b \) respectively are \( 12, 9, 16 \). ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3: ONE OR MORE THAN ONE OPTION CORRECT TYPE)|15 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE )|24 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If A=[(0,2),(3,-4)] and kA =[(0,3 a),(2b,24)] , then the values of k, a and b respectively are:

If A={:[(0,2),(3,-4)]:}and kA={:[(0,3a),(2b,24)]:} , then the values of k,a,b are respectively.

If A=[{:(0,2),(3,-4):}] and k A =[{:(0,3a),(2b,24):}], then find the value of b-a-k.

If A=[[0,23,-4]] and kA=[[0,3a2b,24]], then the values of k,a,b, are respectively (a)-6,-12,-18(b)-6,4,9(c)-6,-4,-9(d)-6,12,18

If matrix P = [(0,2),(3,-4)] and kP = [ (0,3a),(2b,24)] where k, a and b are constants, then the values of k, a, b respectively are

If A={:[(0,5),(4,0)]:}" and "A^(-1)=kA," then: "k=