Home
Class 12
MATHS
Let Q = [{: (cos ""(pi)/(4) , - sin""(pi...

Let Q = `[{: (cos ""(pi)/(4) , - sin""(pi)/(4)),(sin""(pi)/(4), cos""(pi)/(4)):}] and x = [{:((2)/(sqrt(2))),((1)/(sqrt(2))):}]` then `Q^(3)` x is equal to

A

`[{:(0),(1):}]`

B

`[{:(-(1)/(sqrt(2))),((1)/(sqrt(2))):}]`

C

`[{:(-1),(0):}]`

D

`[{:(-(1)/(sqrt(2))),(- (1)/(sqrt(2))):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate \( Q^3 \cdot x \), where \( Q \) and \( x \) are given matrices. ### Step 1: Define the matrices The matrix \( Q \) is defined as: \[ Q = \begin{pmatrix} \cos\left(\frac{\pi}{4}\right) & -\sin\left(\frac{\pi}{4}\right) \\ \sin\left(\frac{\pi}{4}\right) & \cos\left(\frac{\pi}{4}\right) \end{pmatrix} \] Using the values of sine and cosine at \( \frac{\pi}{4} \): \[ \cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] Thus, we can rewrite \( Q \) as: \[ Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \] The matrix \( x \) is given as: \[ x = \begin{pmatrix} \frac{2}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \] ### Step 2: Calculate \( Q^2 \) To find \( Q^3 \), we first need to calculate \( Q^2 \): \[ Q^2 = Q \cdot Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \] Calculating the elements of \( Q^2 \): - First row, first column: \[ \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + \left(-\frac{1}{\sqrt{2}}\right) \cdot \frac{1}{\sqrt{2}} = \frac{1}{2} - \frac{1}{2} = 0 \] - First row, second column: \[ \frac{1}{\sqrt{2}} \cdot \left(-\frac{1}{\sqrt{2}}\right) + \left(-\frac{1}{\sqrt{2}}\right) \cdot \frac{1}{\sqrt{2}} = -\frac{1}{2} - \frac{1}{2} = -1 \] - Second row, first column: \[ \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{1}{2} + \frac{1}{2} = 1 \] - Second row, second column: \[ \frac{1}{\sqrt{2}} \cdot \left(-\frac{1}{\sqrt{2}}\right) + \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = -\frac{1}{2} + \frac{1}{2} = 0 \] Thus, we have: \[ Q^2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \] ### Step 3: Calculate \( Q^3 \) Now we calculate \( Q^3 = Q^2 \cdot Q \): \[ Q^3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \] Calculating the elements of \( Q^3 \): - First row, first column: \[ 0 \cdot \frac{1}{\sqrt{2}} + (-1) \cdot \frac{1}{\sqrt{2}} = -\frac{1}{\sqrt{2}} \] - First row, second column: \[ 0 \cdot \left(-\frac{1}{\sqrt{2}}\right) + (-1) \cdot \frac{1}{\sqrt{2}} = -\frac{1}{\sqrt{2}} \] - Second row, first column: \[ 1 \cdot \frac{1}{\sqrt{2}} + 0 \cdot \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \] - Second row, second column: \[ 1 \cdot \left(-\frac{1}{\sqrt{2}}\right) + 0 \cdot \frac{1}{\sqrt{2}} = -\frac{1}{\sqrt{2}} \] Thus, we have: \[ Q^3 = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \] ### Step 4: Multiply \( Q^3 \) by \( x \) Now we multiply \( Q^3 \) by \( x \): \[ Q^3 \cdot x = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \cdot \begin{pmatrix} \frac{2}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \] Calculating the elements: - First row: \[ -\frac{1}{\sqrt{2}} \cdot \frac{2}{\sqrt{2}} + (-\frac{1}{\sqrt{2}}) \cdot \frac{1}{\sqrt{2}} = -1 - \frac{1}{2} = -\frac{3}{2} \] - Second row: \[ \frac{1}{\sqrt{2}} \cdot \frac{2}{\sqrt{2}} + (-\frac{1}{\sqrt{2}}) \cdot \frac{1}{\sqrt{2}} = 1 - \frac{1}{2} = \frac{1}{2} \] Thus, we have: \[ Q^3 \cdot x = \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} \] ### Final Answer The final result is: \[ Q^3 \cdot x = \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|8 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3: ONE OR MORE THAN ONE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

sin(pi/4+A).sin(pi/4-A)=1/2 cos2A

cos((3pi)/4+x)-sin(pi/4-x)=?

sin (pi/2) = 2 sin(pi/4) cos (pi/4)

Prove that: cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

If A=sin((2 pi)/(7))+sin((4 pi)/(7))+sin((8 pi)/(7)) and B=cos((2 pi)/(7))+cos((4 pi)/(7))+cos((8 pi)/(7)) then sqrt(A^(2)+B^(2)) is equal to

int_(-(pi)/(4))^((pi)/(4))(2 pi+sin2 pi x)/(2-cos2x)dx

cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)=sin(x+y)

cos(pi/4-A)cos(pi/4-B)-sin(pi/4-A)sin(pi/4-B)=sin(A+B)

Evaluate the following: (cos(2 pi))/(3)(cos pi)/(4)-(sin(2 pi))/(3)(sin pi)/(4)

cos((3pi)/(4)+x)-cos((3pi)/(4)-x) = -sqrt(2)sinx

MTG-WBJEE-MATRICES AND DETERMINANTS -WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE )
  1. Let I = [{:(1, 0, 0),(0 ,1, 0),(0,0,1):}] and P = [{:(1, 0, 0),(0 ,-1...

    Text Solution

    |

  2. The value of the determinant |{:(1+ a^(2) - b^(2),2 ab , - 2b),(2a...

    Text Solution

    |

  3. Let Q = [{: (cos ""(pi)/(4) , - sin""(pi)/(4)),(sin""(pi)/(4), cos""(p...

    Text Solution

    |

  4. If n ge 2 is an integer A= [(cos (2pi/n), sin (2pi/n),0),(-sin (2pi/n)...

    Text Solution

    |

  5. Let I denote the 3xx3 identity matrix and P be a matrix obtained by re...

    Text Solution

    |

  6. Let f(x) = 2x^(2) + 5x + 1 . If we write f(x) as f(x) = a (x + 1) (x ...

    Text Solution

    |

  7. The value of lambda, such that the following system of equations has n...

    Text Solution

    |

  8. If f(x) = |{:(1, x, x +1),(2x , x (x - 1), (x + 1)x),(3x(x - 1), x (x ...

    Text Solution

    |

  9. If A and B are two matrices such that AB=B and BA=A , then A^2+B^2=

    Text Solution

    |

  10. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  11. If omegais an imaginary cube root of unity, then the value of the det...

    Text Solution

    |

  12. If x , y and z be greater than 1, then the value of |{:(1, log(x)y, l...

    Text Solution

    |

  13. If A is a 3x3 matrix and B is its adjoint matrix the determinant of B ...

    Text Solution

    |

  14. The linear system of equations 8x-3y-5z=0 ,5x-8y+3z=0 and 3x+5y-8z=0

    Text Solution

    |

  15. Let A = [{:(x + 2, 3x),(3,x + 2):}], B = [{:(x , 0),(5 , x + 2):}]. Th...

    Text Solution

    |

  16. The value of det A, where A=((1,costheta,0),(-costheta,1,costheta),(-1...

    Text Solution

    |

  17. If |{:(- 1, 7 , 0),(2, 1, -3),(3, 4, 1):}| = A, then |{:(13, -11 , 5),...

    Text Solution

    |

  18. If a^(r) = (cos 2 r pi + I sin 2 r pi )^(1//9) , then the value of |{:...

    Text Solution

    |

  19. If Sr = |[2r,x,n(n+1)],[6r^2-1,y,n^2(2n+3)],[4r^3-2nr,z,n^3(n+1)]| the...

    Text Solution

    |

  20. If the following three linear equations have a non-trivial solution , ...

    Text Solution

    |