Home
Class 12
MATHS
Let A = [{:(x + 2, 3x),(3,x + 2):}], B =...

Let A = `[{:(x + 2, 3x),(3,x + 2):}], B = [{:(x , 0),(5 , x + 2):}]`. Then all solutions of the equation det (AB ) = 0 is

A

1, - 1, 0, 2

B

1, 4, 0, -2

C

1, - 1, 4, 3

D

`-1, 4, 0, 3 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \text{det}(AB) = 0 \) where \( A = \begin{pmatrix} x + 2 & 3x \\ 3 & x + 2 \end{pmatrix} \) and \( B = \begin{pmatrix} x & 0 \\ 5 & x + 2 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the product \( AB \) To find \( AB \), we multiply the matrices \( A \) and \( B \): \[ AB = A \cdot B = \begin{pmatrix} x + 2 & 3x \\ 3 & x + 2 \end{pmatrix} \cdot \begin{pmatrix} x & 0 \\ 5 & x + 2 \end{pmatrix} \] Calculating the elements of the resulting matrix: - First row, first column: \[ (x + 2) \cdot x + 3x \cdot 5 = x^2 + 2x + 15x = x^2 + 17x \] - First row, second column: \[ (x + 2) \cdot 0 + 3x \cdot (x + 2) = 3x^2 + 6x \] - Second row, first column: \[ 3 \cdot x + (x + 2) \cdot 5 = 3x + 5x + 10 = 8x + 10 \] - Second row, second column: \[ 3 \cdot 0 + (x + 2) \cdot (x + 2) = (x + 2)^2 = x^2 + 4x + 4 \] Thus, the product \( AB \) is: \[ AB = \begin{pmatrix} x^2 + 17x & 3x^2 + 6x \\ 8x + 10 & (x + 2)^2 \end{pmatrix} \] ### Step 2: Calculate the determinant \( \text{det}(AB) \) The determinant of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by \( ad - bc \). For our matrix \( AB \): \[ \text{det}(AB) = (x^2 + 17x)(x^2 + 4x + 4) - (3x^2 + 6x)(8x + 10) \] ### Step 3: Expand the determinant expression Expanding \( (x^2 + 17x)(x^2 + 4x + 4) \): \[ = x^4 + 4x^3 + 4x^2 + 17x^3 + 68x^2 + 68x \] \[ = x^4 + 21x^3 + 72x^2 + 68x \] Expanding \( (3x^2 + 6x)(8x + 10) \): \[ = 24x^3 + 30x^2 + 48x^2 + 60x \] \[ = 24x^3 + 78x^2 + 60x \] ### Step 4: Set the determinant to zero Now, substituting back into the determinant equation: \[ x^4 + 21x^3 + 72x^2 + 68x - (24x^3 + 78x^2 + 60x) = 0 \] Combining like terms: \[ x^4 + (21x^3 - 24x^3) + (72x^2 - 78x^2) + (68x - 60x) = 0 \] \[ x^4 - 3x^3 - 6x^2 + 8x = 0 \] ### Step 5: Factor the polynomial Factoring out \( x \): \[ x(x^3 - 3x^2 - 6x + 8) = 0 \] This gives us one solution: \[ x = 0 \] ### Step 6: Solve the cubic equation Now we need to solve \( x^3 - 3x^2 - 6x + 8 = 0 \). We can use the Rational Root Theorem or synthetic division to find the roots. Testing \( x = 2 \): \[ 2^3 - 3(2^2) - 6(2) + 8 = 8 - 12 - 12 + 8 = -8 \quad \text{(not a root)} \] Testing \( x = 1 \): \[ 1^3 - 3(1^2) - 6(1) + 8 = 1 - 3 - 6 + 8 = 0 \quad \text{(is a root)} \] Now, we can factor \( x - 1 \) out of \( x^3 - 3x^2 - 6x + 8 \) using synthetic division, which gives us: \[ x^3 - 3x^2 - 6x + 8 = (x - 1)(x^2 - 2x - 8) \] ### Step 7: Solve the quadratic equation Now we solve \( x^2 - 2x - 8 = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-8)}}{2(1)} = \frac{2 \pm \sqrt{4 + 32}}{2} = \frac{2 \pm \sqrt{36}}{2} = \frac{2 \pm 6}{2} \] This gives us: \[ x = \frac{8}{2} = 4 \quad \text{and} \quad x = \frac{-4}{2} = -2 \] ### Final Solutions The solutions to the equation \( \text{det}(AB) = 0 \) are: \[ x = 0, \quad x = -2, \quad x = 1, \quad x = 4 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|8 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3: ONE OR MORE THAN ONE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

Find the solutions of the equation : 3x^2 - 7x - 6 = 0

Number of real solutions of the equation x ^(2) +3|x| + 2 =0 is:

The number of real solutions of the equation |x|^(2)-3|x|+2=0 is :

The number of real solution of the equation |x|^(2)-3|x|+2=0 is

Number of solution of the equation |x|^(2)-3|X|+2=0

The number of real solutions of the equation |x|^(2)-3|x|+2=0

The solution set of the equation det[[1,4,201,-2,51,2x,5x^(2)]]=0 is

MTG-WBJEE-MATRICES AND DETERMINANTS -WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE )
  1. Let I denote the 3xx3 identity matrix and P be a matrix obtained by re...

    Text Solution

    |

  2. Let f(x) = 2x^(2) + 5x + 1 . If we write f(x) as f(x) = a (x + 1) (x ...

    Text Solution

    |

  3. The value of lambda, such that the following system of equations has n...

    Text Solution

    |

  4. If f(x) = |{:(1, x, x +1),(2x , x (x - 1), (x + 1)x),(3x(x - 1), x (x ...

    Text Solution

    |

  5. If A and B are two matrices such that AB=B and BA=A , then A^2+B^2=

    Text Solution

    |

  6. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  7. If omegais an imaginary cube root of unity, then the value of the det...

    Text Solution

    |

  8. If x , y and z be greater than 1, then the value of |{:(1, log(x)y, l...

    Text Solution

    |

  9. If A is a 3x3 matrix and B is its adjoint matrix the determinant of B ...

    Text Solution

    |

  10. The linear system of equations 8x-3y-5z=0 ,5x-8y+3z=0 and 3x+5y-8z=0

    Text Solution

    |

  11. Let A = [{:(x + 2, 3x),(3,x + 2):}], B = [{:(x , 0),(5 , x + 2):}]. Th...

    Text Solution

    |

  12. The value of det A, where A=((1,costheta,0),(-costheta,1,costheta),(-1...

    Text Solution

    |

  13. If |{:(- 1, 7 , 0),(2, 1, -3),(3, 4, 1):}| = A, then |{:(13, -11 , 5),...

    Text Solution

    |

  14. If a^(r) = (cos 2 r pi + I sin 2 r pi )^(1//9) , then the value of |{:...

    Text Solution

    |

  15. If Sr = |[2r,x,n(n+1)],[6r^2-1,y,n^2(2n+3)],[4r^3-2nr,z,n^3(n+1)]| the...

    Text Solution

    |

  16. If the following three linear equations have a non-trivial solution , ...

    Text Solution

    |

  17. Let A be a square matrix of order 3 whose all entries are 1 and let I(...

    Text Solution

    |

  18. If M is any sauare matrix of order 3 over R and if M' be the transpose...

    Text Solution

    |

  19. If A = ({:(5, 5x, x ),(0, x , 5x),(0, 0, 5):}) and |A^(2)| = 25 , the...

    Text Solution

    |

  20. Let A and B be two square matrices of order 3 and AB = O(3) , where O(...

    Text Solution

    |