Home
Class 12
MATHS
Let A be a square matrix of order 3 whos...

Let A be a square matrix of order 3 whose all entries are 1 and let `I_(3)` be the indentiy matrix of order 3. then the matrix A - `3I_(3)` is

A

invertible

B

orthogonal

C

non-invertible

D

real skew symmetric matrix

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( A - 3I_3 \) where \( A \) is a square matrix of order 3 with all entries equal to 1, and \( I_3 \) is the identity matrix of order 3. ### Step 1: Define the matrices 1. **Matrix \( A \)**: \[ A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \] 2. **Identity Matrix \( I_3 \)**: \[ I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 2: Calculate \( 3I_3 \) Now, we multiply the identity matrix \( I_3 \) by 3: \[ 3I_3 = 3 \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} \] ### Step 3: Calculate \( A - 3I_3 \) Now, we subtract \( 3I_3 \) from \( A \): \[ A - 3I_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} - \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 1-3 & 1-0 & 1-0 \\ 1-0 & 1-3 & 1-0 \\ 1-0 & 1-0 & 1-3 \end{pmatrix} \] Calculating the entries: \[ A - 3I_3 = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \] ### Step 4: Determine the properties of \( A - 3I_3 \) To check if the matrix \( A - 3I_3 \) is invertible, we need to calculate its determinant. ### Step 5: Calculate the determinant of \( A - 3I_3 \) Using the determinant formula for a \( 3 \times 3 \) matrix: \[ \text{det}(B) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( B = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \). For our matrix \( A - 3I_3 \): \[ B = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \] Calculating the determinant: \[ \text{det}(A - 3I_3) = -2((-2)(-2) - (1)(1)) - 1(1(-2) - (1)(1)) + 1(1(1) - (-2)(1)) \] \[ = -2(4 - 1) - 1(-2 - 1) + 1(1 + 2) \] \[ = -2(3) + 3 + 3 \] \[ = -6 + 3 + 3 = 0 \] ### Conclusion Since the determinant of \( A - 3I_3 \) is 0, the matrix \( A - 3I_3 \) is **non-invertible**. ### Final Answer The matrix \( A - 3I_3 \) is non-invertible.
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|8 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3: ONE OR MORE THAN ONE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If I_3 is the identily matrix of order 3, then (I_3)^(-1)=

If A is a square matrix of order 2 then det(-3A) is

If A is a square matrix of order 2, then det(-3A) is

If A is a square matrix of order 2, then det(-3A) is

If I_(3) is identity matrix of order 3, then I_(3)^(-1)=

If A is a skew-symmetric matrix of order 3 ,then the matrix A^(4) is

Let A and B be two square matrices of order 3 and AB = O_(3) , where O_(3) denotes the null matrix of order 3. then

" 2.Let A be a square matrix of order "3times3" ,then "|KA|" is equal to "

MTG-WBJEE-MATRICES AND DETERMINANTS -WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE )
  1. Let I denote the 3xx3 identity matrix and P be a matrix obtained by re...

    Text Solution

    |

  2. Let f(x) = 2x^(2) + 5x + 1 . If we write f(x) as f(x) = a (x + 1) (x ...

    Text Solution

    |

  3. The value of lambda, such that the following system of equations has n...

    Text Solution

    |

  4. If f(x) = |{:(1, x, x +1),(2x , x (x - 1), (x + 1)x),(3x(x - 1), x (x ...

    Text Solution

    |

  5. If A and B are two matrices such that AB=B and BA=A , then A^2+B^2=

    Text Solution

    |

  6. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  7. If omegais an imaginary cube root of unity, then the value of the det...

    Text Solution

    |

  8. If x , y and z be greater than 1, then the value of |{:(1, log(x)y, l...

    Text Solution

    |

  9. If A is a 3x3 matrix and B is its adjoint matrix the determinant of B ...

    Text Solution

    |

  10. The linear system of equations 8x-3y-5z=0 ,5x-8y+3z=0 and 3x+5y-8z=0

    Text Solution

    |

  11. Let A = [{:(x + 2, 3x),(3,x + 2):}], B = [{:(x , 0),(5 , x + 2):}]. Th...

    Text Solution

    |

  12. The value of det A, where A=((1,costheta,0),(-costheta,1,costheta),(-1...

    Text Solution

    |

  13. If |{:(- 1, 7 , 0),(2, 1, -3),(3, 4, 1):}| = A, then |{:(13, -11 , 5),...

    Text Solution

    |

  14. If a^(r) = (cos 2 r pi + I sin 2 r pi )^(1//9) , then the value of |{:...

    Text Solution

    |

  15. If Sr = |[2r,x,n(n+1)],[6r^2-1,y,n^2(2n+3)],[4r^3-2nr,z,n^3(n+1)]| the...

    Text Solution

    |

  16. If the following three linear equations have a non-trivial solution , ...

    Text Solution

    |

  17. Let A be a square matrix of order 3 whose all entries are 1 and let I(...

    Text Solution

    |

  18. If M is any sauare matrix of order 3 over R and if M' be the transpose...

    Text Solution

    |

  19. If A = ({:(5, 5x, x ),(0, x , 5x),(0, 0, 5):}) and |A^(2)| = 25 , the...

    Text Solution

    |

  20. Let A and B be two square matrices of order 3 and AB = O(3) , where O(...

    Text Solution

    |