Home
Class 12
MATHS
Statement -1: If xin[-1//sqrt(3),1//sqrt...

Statement -1: If `xin[-1//sqrt(3),1//sqrt(3)]` then `cot^(-1)((3x-x^(3))/(1-3x^(2)))=cos^(-1)((1-x^(2))/(1+x^(2)))rarrx=sqrt(25-10sqrt(5))/(5)` statement -2: `sin18^(@)=sqrt(5-1)/(4) and cos18^(@)=sqrt(10+2sqrt(5))/4 `

A

Statement-1 is is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

Clearly statement 2 is true
now `cot^(-1)(3x-x^(3))/(1-3x^(2))=cos^(-1)(1-x^(2))/(1+x^(2))`
`rarr (pi)/(2) tan^(-1)(3x-x^(3))/(1-3x^(2))=cos^(-1)(1-x^(2))/(1+x^(2))`
`rarr (pi)/(2) -3 tan^(-1)x=2 tan^(-1)x`
`rarr tan^(-1)x=(pi)/(10)`
`rarr x=tana(pi)/(10)=(sin 18^(@))/(cso 18^(@))=(sqrt(5)-1)/(sqrt(10+2sqrt(5))`
`rarr x=(sqrt(5)-1sqrt(10-2)sqrt(5))/(sqrt(100-20) rarr x=(sqrt(10-2)sqrt(5)(6-2sqrt(5))/(4sqrt(5))`
`rarr x =sqrt(80-32sqrt(5))/(4sqrt(5))=sqrt(5-2sqrt(5))/sqrt(5)=sqrt(25-10)sqrt(5)/(5)`
so statement -1 is true
Also statemnet -2 is correct explanation for statement -1
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|71 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

int_(-(1)/(sqrt(3)))^(-(1)/(sqrt(3)))(x^(4))/(1-x^(4))cos^(-1)((2x)/(1+x^(2)))dx

sqrt(5x-4)+sqrt(3x+1)<3

If x in[-1/2,1] then sin^(-1)(sqrt(3)/(2)x-1/2sqrt(1-x^(2)))

If x in[(sqrt(3))/(2), 1] then [sin^(-1){(x)/(sqrt(2))+(sqrt(1-x^(2)))/(sqrt(2))}-sin^(-1)x]=

The value of cos^(-1)[cot(sin^(-1)(sqrt((2-sqrt(3))/(4)))+cos^(-1)((sqrt(12))/(4))+sec^(-1)sqrt(2))

If tan^(-1)x+cos^(-1)((y)/(sqrt(1+y^(2))))=sin^(-1)((3)/(sqrt(10))) , then

then -x^(2)=((sqrt(5)-1)/(2)) b.x^(2)=((sqrt(5)+1)/(2)) c.sin(cos^(-1)x)=((sqrt(5)-1)/(2))dtan(cos^(-1)x)=((sqrt(5)-1)/(2))

if x=sqrt(3)+(1)/(sqrt(3)) and y=sqrt(3)-(1)/(sqrt(3)) then x^(2)-y^(2) is

int_(0)^(1)((3x^(2))/(sqrt(1-x^(6)))+(4x^(3))/(sqrt(1-x^(8)))+(5x^(4))/(sqrt(1-x^(10)))+...." to "n" terms ")dx=

sin^(-1)(1/sqrt5)+cos^(-1)(3/sqrt(10))