Home
Class 12
MATHS
Statement -1: If a^(2)+b^(2)=c^(2),c ne ...

Statement -1: If `a^(2)+b^(2)=c^(2),c ne 0` then the non zero solution of the equation `sin^(-1)((ax)/(c ))+sin^(-1)((bx)/(c))=sin^(-1)x` is `pm`1,. Statement-2: `sin^(-1)x+sin^(-1)y= sin^(-1)(x+y)`

A

Statement-1 is is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

Clearly statement 2 is not true
we have
`c^(2)=a^(2)+b^(2)` so let `a=c cos alpha and b =c sin alpha` then
`sin^(-1)(ax)/(c )+sin^(-1)(bx)/(c )=sin^(-1)x`
`rarr sin^(-1)(x cos alpha) s+sin^(-1) (x sin alpha)=sin^(-1)x`
`rarr sin^(-1)(xcos alphasqrt(1=-x^(2))sin^(2)alpha)+x sin alpha sqrt(1-x^(2) cos^(2) alpha)`
`rarr cos alpha sqrt(1-x^(2)) alpha+sin alpha sqrt(1-x^(2) cos^(2) alpha=1)`
clearly `x=pm1` satisfies this equaiton
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|71 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If a^(2) + b^(2) = c^(2), c != 0 , then find the non-zero solution of the equation: sin^(-1).(ax)/(c) + sin^(-1).(bx)/(c) = sin^(-1) x

(sin^(-1)(ax))/(c)+(sin^(-1)(bx))/(c)=sin^(-1)x where a^(2)+b^(2)=c^(2) and c!=0

Let alpha is the solution of equation sin^(-1)(2sin^(-1)(cos^(-1)(tan^(-1)x)))=0 and beta is the solution of equation sin^(-1)x+sin^(-1)x^(2)=(pi)/(2), then -

(sin^(-1)(3x))/(5)+(sin^(-1)(4x))/(5)=sin^(-1)x, then roots of the equation are- a.0 b.1 c.-1 d.-2

The number of solution of equation sin^(-1)x+n sin^(-1)(1-x)=(m pi)/(2), wheren >0,m<=0 is 3(b)1(c)2(d) None of these

Prove that : sin^(-1)x+sin^(-1)y=sin^(-1)(xsqrt(1-y^2)+ysqrt(1-x^2))

If sin^(-1) x + sin^(-1) y = (pi)/(2) and sin 2x = cos 2y , then

If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^(2), then

The general solution of the equation (1-sin x+...+(-1)^(n)sin^(n)x+...)/(1+sin x+......+sin^(n)x+...)=(1-cos2x)/(1+cos2x)