Home
Class 12
MATHS
Statement -1: if -1lexle1 then sin^(-1)(...

Statement -1: if `-1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x` Statement-2: If `-1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))`

A

Statement-1 is is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

clearly statement -1 true
putting `x =cos theta` we get
`2 sin^(-1) sqrt(1-x)/(2)=2cos^(-1) sqrt(1+x)/(2)=theta =cos^(-1)x`
so statement 2 is also true
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|71 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

sin^(-1)x=cos^(-1)sqrt(1-x^(2))

3cos^(-1)x=sin^(-1)(sqrt(1-x^(2))(4x^(2)-1))

cos^(-1)sqrt(1-x)+sin^(-1)sqrt(1-x)=

Solve 2cos^(-1)x=sin^(-1)(2x sqrt(1-x^(2)))

2sin^(-1) (sqrt(1-x)/2) = cos^(-1) (_______).

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

Solve 2 cos^(-1) x = sin^(-1) (2 x sqrt(1 - x^(2)))

y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))