Home
Class 12
MATHS
If f(x)={(e^((1)/(x))/(1+e^((1)/(x)))","...

If `f(x)={(e^((1)/(x))/(1+e^((1)/(x)))",", x ne0),(0",",x=0):}`, then

A

`f(0^(+))=1`

B

`f(0^(+))=0`

C

`f(0^-))=1`

D

`f(0^(-))=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}} & , \quad x \neq 0 \\ 0 & , \quad x = 0 \end{cases} \] We want to find the limits \( \lim_{x \to 0^+} f(x) \) and \( \lim_{x \to 0^-} f(x) \). ### Step 1: Calculate \( \lim_{x \to 0^+} f(x) \) For \( x \to 0^+ \), \( \frac{1}{x} \) approaches \( +\infty \). Therefore, we can evaluate: \[ f(x) = \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}} \] As \( x \to 0^+ \), \( e^{\frac{1}{x}} \to e^{+\infty} \to \infty \). Thus, we can rewrite the limit: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}} = \lim_{x \to 0^+} \frac{1}{\frac{1}{e^{\frac{1}{x}}} + 1} \] As \( e^{\frac{1}{x}} \to \infty \), \( \frac{1}{e^{\frac{1}{x}}} \to 0 \). Therefore, we have: \[ \lim_{x \to 0^+} f(x) = \frac{1}{0 + 1} = 1 \] ### Step 2: Calculate \( \lim_{x \to 0^-} f(x) \) For \( x \to 0^- \), \( \frac{1}{x} \) approaches \( -\infty \). Thus, we evaluate: \[ f(x) = \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}} \] As \( x \to 0^- \), \( e^{\frac{1}{x}} \to e^{-\infty} \to 0 \). Therefore, we can rewrite the limit: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}} = \lim_{x \to 0^-} \frac{0}{1 + 0} = 0 \] ### Step 3: Conclusion We have found: \[ \lim_{x \to 0^+} f(x) = 1 \quad \text{and} \quad \lim_{x \to 0^-} f(x) = 0 \] Since the left-hand limit and the right-hand limit are not equal, we conclude that \( f(x) \) is not continuous at \( x = 0 \). ### Final Answer - \( \lim_{x \to 0^+} f(x) = 1 \) - \( \lim_{x \to 0^-} f(x) = 0 \) - \( f(x) \) is not continuous at \( x = 0 \).
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|24 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|5 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is

If f(x)={((1)/(1+e^(1//x))"," ,x ne 0),(0",", x =0):} then f(x) is :

If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0),(" "0",",x = 0):} , then at x = 0 f(x) is

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

The function f given by f(x)={((e^(1//x)-1)/(e^(1//x)+1)",","if",x ne 0),(0",","if", x =0):} , is

Prove that the function If f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" "0", " x=0):} is not differentiable

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is