Home
Class 12
MATHS
If A=lim(xrarr-2)(tanpix)/(x+2)+lim(xrar...

If `A=lim_(xrarr-2)(tanpix)/(x+2)+lim_(xrarroo)(1+(1)/(x^(2)))^(x)`, then

A

`A gt 3`

B

`A gt 4`

C

`A lt 4`

D

A is a transcedental number

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ A = \lim_{x \to -2} \frac{\tan(\pi x)}{x + 2} + \lim_{x \to \infty} \left(1 + \frac{1}{x^2}\right)^x \] ### Step 1: Evaluate the first limit We start with the limit: \[ \lim_{x \to -2} \frac{\tan(\pi x)}{x + 2} \] Substituting \( x = -2 \) directly gives us: \[ \tan(-2\pi) = 0 \quad \text{and} \quad x + 2 = 0 \] This results in the indeterminate form \( \frac{0}{0} \). Therefore, we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Using L'Hôpital's Rule, we differentiate the numerator and denominator: 1. The derivative of the numerator \( \tan(\pi x) \) is \( \pi \sec^2(\pi x) \). 2. The derivative of the denominator \( x + 2 \) is \( 1 \). Thus, we have: \[ \lim_{x \to -2} \frac{\tan(\pi x)}{x + 2} = \lim_{x \to -2} \frac{\pi \sec^2(\pi x)}{1} \] ### Step 3: Substitute \( x = -2 \) Now we substitute \( x = -2 \): \[ \sec^2(-2\pi) = \sec^2(2\pi) = \frac{1}{\cos^2(2\pi)} = \frac{1}{1^2} = 1 \] Thus, we get: \[ \lim_{x \to -2} \frac{\tan(\pi x)}{x + 2} = \pi \cdot 1 = \pi \] ### Step 4: Evaluate the second limit Next, we evaluate the second limit: \[ \lim_{x \to \infty} \left(1 + \frac{1}{x^2}\right)^x \] This limit is of the form \( 1^\infty \). We can rewrite it using the exponential function: \[ \lim_{x \to \infty} \left(1 + \frac{1}{x^2}\right)^x = e^{\lim_{x \to \infty} x \ln\left(1 + \frac{1}{x^2}\right)} \] ### Step 5: Simplify the logarithm Using the Taylor expansion \( \ln(1 + u) \approx u \) for small \( u \): \[ \ln\left(1 + \frac{1}{x^2}\right) \approx \frac{1}{x^2} \] Thus, \[ x \ln\left(1 + \frac{1}{x^2}\right) \approx x \cdot \frac{1}{x^2} = \frac{1}{x} \] ### Step 6: Evaluate the limit Now we evaluate: \[ \lim_{x \to \infty} \frac{1}{x} = 0 \] So we have: \[ e^{\lim_{x \to \infty} x \ln\left(1 + \frac{1}{x^2}\right)} = e^0 = 1 \] ### Step 7: Combine the results Now we can combine both limits: \[ A = \pi + 1 \] ### Final Result Thus, the final value of \( A \) is: \[ A = \pi + 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|24 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|5 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

Lim_(xrarroo)((x+1)/(x+2))^(x+3)

lim_( xrarr0) (1-cosx)/(x^(2))

lim_(xrarroo) (2x)/(1+4x)

If l=lim_(xto-2) (tanpix)/(x+2)+lim_(xtooo) ( (1+1)/(x^2)^2) , then which one of the following is not correct?

Lim_(xrarroo)(1+5/x)^x

Lim_(xrarroo)(x/(x+2))^x

lim_(xrarr-2)((1)/(x)+(1)/(2))/(x+2)

lim_(xrarroo) (x^2-sinx)/(x^2-2)

lim_(xrarr oo) (1+(2)/(x))^x equals

lim_(xrarroo) (sqrt(x^2+2x-1)-x)=