Home
Class 12
MATHS
lim(xrarr0)((1^(x)+2^(x)+3^(x)+…..+n^(x)...

`lim_(xrarr0)((1^(x)+2^(x)+3^(x)+…..+n^(x))/(n))^((a)/(x))` equals

A

`(n!)^((a)/(n))`

B

`(n!)^(an)`

C

None of these

D

`(n!)^((n)/(a))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \left( \frac{1^x + 2^x + 3^x + \ldots + n^x}{n} \right)^{\frac{a}{x}}, \] we will follow these steps: ### Step 1: Rewrite the expression We start by rewriting the expression inside the limit: \[ L = \lim_{x \to 0} \left( \frac{1^x + 2^x + 3^x + \ldots + n^x}{n} \right)^{\frac{a}{x}}. \] ### Step 2: Evaluate the limit of the numerator As \( x \to 0 \), each term \( k^x \) (for \( k = 1, 2, \ldots, n \)) approaches 1. Therefore, we can express the limit as: \[ \lim_{x \to 0} \left( \frac{1 + 1 + 1 + \ldots + 1}{n} \right) = \frac{n}{n} = 1. \] ### Step 3: Recognize the indeterminate form Now we have an expression of the form \( 1^{\infty} \). To resolve this, we can use the logarithmic limit approach: \[ L = e^{\lim_{x \to 0} \frac{a}{x} \left( \frac{1^x + 2^x + \ldots + n^x}{n} - 1 \right)}. \] ### Step 4: Simplify the expression inside the limit We need to analyze the expression: \[ \frac{1^x + 2^x + \ldots + n^x}{n} - 1 = \frac{1^x + 2^x + \ldots + n^x - n}{n}. \] ### Step 5: Use Taylor expansion Using the Taylor expansion for \( k^x \) around \( x = 0 \): \[ k^x \approx 1 + x \ln k, \] we can write: \[ 1^x + 2^x + \ldots + n^x \approx n + x(\ln 1 + \ln 2 + \ldots + \ln n) = n + x \ln(n!). \] Thus, we have: \[ \frac{1^x + 2^x + \ldots + n^x - n}{n} \approx \frac{x \ln(n!)}{n}. \] ### Step 6: Substitute back into the limit Now substituting back into our limit, we get: \[ L = e^{\lim_{x \to 0} \frac{a}{x} \cdot \frac{x \ln(n!)}{n}} = e^{\frac{a \ln(n!)}{n}}. \] ### Step 7: Final expression Thus, our final result for the limit is: \[ L = e^{\frac{a \ln(n!)}{n}} = (n!)^{\frac{a}{n}}. \] ### Final Answer The limit evaluates to: \[ \lim_{x \to 0} \left( \frac{1^x + 2^x + \ldots + n^x}{n} \right)^{\frac{a}{x}} = (n!)^{\frac{a}{n}}. \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|24 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|5 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((1^(x)+2^(x)+.........*+n^(x))/(n))^((1)/(x)) is equal

lim_(xrarr0) (x^(2)-3x+2)

lim_(xrarr0)((x-1+cosx)/(x))^(1//x)

lim_(xrarr0) (3sqrt(1+x-1))/(x)

Evalvate lim_(xrarr0)((3^(x)-2^(x))/(x)).

lim_(xrarr0)(4^x-1)/(3^x-1) equals

The value of lim_(xrarr0)((1+6x)^((1)/(3))-(1+4x)^((1)/(2)))/(x^(2)) is equal to

lim_(xrarr0) (sin 3x)/x

lim_(xrarr0^(+))(x^(n)lnx), n gt0