Home
Class 12
MATHS
Given a real valued function f such that...

Given a real valued function f such that `f(x)={tan^2[x]/(x^2-[x]^2) , x lt 0 and 1 , x=0 and sqrt({x}cot{x}) , x lt 0` where [.] represents greatest integer function then

A

`lim_(xrarr0^(+))f(x)=1`

B

`lim_(xrarr0^(-))f(x)=sqrt(cot1)`

C

`cot^(-1)(lim_(xrarr0^(-))f(x))^(2)=1`

D

f is continuous at x = 0

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|24 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|5 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

Given a real valued function f such that f(x)={(tan^(2)[x])/(x^(2)-[x]^(2)),x<0 and 1,x=0 and sqrt({x}cot{x}),x<0 where [.] represents greatest integer function then

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

lim_(x rarr0)(tan^(2)[x])/([x]^(2)), where [] represents greatest integer function,is

Find x satisfying [tan^(-1)x]+[cot^(-1)x]=2 where [| represents the greatest integer function.

lim_(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greatest integer function).

Let [.] represent the greatest integer function and f(x)=[tan^(2)x] then :

If x^(2)+x+1-|[x]|=0, then (where [.] is greatest integer function) -

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)