Home
Class 12
MATHS
Let f(x)=g(x)(e^(1//x) -e^(-1//x))/(e^(1...

Let `f(x)=g(x)(e^(1//x) -e^(-1//x))/(e^(1//x) + e^(-1//x))`, where g is a continuous function then `lim_(x to 0)` f(x) exist if

A

g(x)=x+2

B

`g(x)=x^2+4`

C

`g(x) =xh(x)`, `h(x)` is a polynomial

D

g(x) is a constant function

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = g(x) \cdot \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} \) as \( x \) approaches 0. ### Step 1: Simplify the expression for \( f(x) \) The expression inside the limit can be simplified. We know that: \[ \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} = \tanh\left(\frac{1}{x}\right) \] Thus, we can rewrite \( f(x) \) as: \[ f(x) = g(x) \cdot \tanh\left(\frac{1}{x}\right) \] ### Step 2: Analyze the behavior of \( \tanh\left(\frac{1}{x}\right) \) As \( x \to 0^- \) (from the left), \( \frac{1}{x} \to -\infty \), and thus: \[ \tanh\left(\frac{1}{x}\right) \to -1 \] As \( x \to 0^+ \) (from the right), \( \frac{1}{x} \to +\infty \), and thus: \[ \tanh\left(\frac{1}{x}\right) \to 1 \] ### Step 3: Find the left-hand limit and right-hand limit of \( f(x) \) #### Left-hand limit as \( x \to 0^- \): \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} g(x) \cdot (-1) = -g(0) \] #### Right-hand limit as \( x \to 0^+ \): \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} g(x) \cdot 1 = g(0) \] ### Step 4: Set the left-hand limit equal to the right-hand limit For the limit \( \lim_{x \to 0} f(x) \) to exist, the left-hand limit must equal the right-hand limit: \[ -g(0) = g(0) \] This implies: \[ 2g(0) = 0 \implies g(0) = 0 \] ### Conclusion The limit \( \lim_{x \to 0} f(x) \) exists if \( g(0) = 0 \). Since \( g \) is a continuous function, this means that \( g(x) \) must approach 0 as \( x \) approaches 0.
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Numberical Answer)|16 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Single Correct Answer)|10 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples Level 1 (Single Correct Answer)|52 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(e^(1/x)-e^(-1/x))/(e^(1/x)+e^(-1/x))

If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0),(" "0",",x = 0):} , then at x = 0 f(x) is

Let f(x)=(x)/(1+x^(2)) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greatest integer function), then

f(x)=int_(0)^(x)g(t)log_(e)((1-t)/(1+t))dt ,where "g" is a continuous odd function. If int_(-pi/2)^( pi/2)(f(x)+(x^(2)cos x)/(1+e^(x)))dx=((pi)/(alpha))^(2)-alpha ,then alpha is equal to

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

If x gt0 and g is bounded function then lim_(xtooo)(f(x)e^(nx)+g(x))/(e^(nx)+1)

Let f(x) be the continuous function such that f(x)= (1-e^(x))/(x) for x!=0 then

Let f(x)=(e^(x)x cos x-x log_(e)(1+x)-x)/(x^(2)),x!=0 If f(x) is continuous at x=0, then f(0) is equal to

For the function f(x) = (e^(1/x) -1)/(e^(1//x) + 1) , x=0 , which of the following is correct .

MCGROW HILL PUBLICATION-LIMITS AND CONTINUITY-Solved Examples Level 2 (Single Correct Answer)
  1. The value of lim(x to 0) (e^x+e^-x-2)/(x^2))^(1/x^2) equals

    Text Solution

    |

  2. If underset(xtooo)lim{(x^(2)+1)/(x+1)-(ax+b)}=0, then find the values ...

    Text Solution

    |

  3. Let f(x)=g(x)(e^(1//x) -e^(-1//x))/(e^(1//x) + e^(-1//x)), where g is ...

    Text Solution

    |

  4. The value of f(0) , so that the function f(x) = (sqrt(a^(2)-ax+x^(3)...

    Text Solution

    |

  5. If f(x)=(2-(256-7x)^(1//8))/((5x+32)^(1//5)-2) ( x ne 0) , then for f ...

    Text Solution

    |

  6. Let f(x)=(x(1+acosx)-bsinx)/(x^3), x!=0 and f(0)=1.The value of a and...

    Text Solution

    |

  7. f(x)={{:((3//x^2)sin2x^2,"if" x lt 0),((x^2+2x+c)/(1-3x^2), "if" x ge ...

    Text Solution

    |

  8. The function f(x)=(sin 2x)^(tan^(2)2x) is not defined at x=(pi)/(4). T...

    Text Solution

    |

  9. Let f(x)=(log (1+x+x^2)+log(1-x+x^2))/(sec x-cosx) , x ne 0 .Then the ...

    Text Solution

    |

  10. The value of k(k gt 0) for which the function f(x)=(e^x-1)^4/(sin(x^2/...

    Text Solution

    |

  11. The function f(x) = (log(1+ax)-log(1-bx))/(x) is not defined at x = 0....

    Text Solution

    |

  12. Let f(x)=log(1+x^2)/(x^4-26x^2+25Then 1)f is continuous on ([6,10](2) ...

    Text Solution

    |

  13. Let f(x)=(sin (pi cos^2 x))/x^2 , x ne 0 . The value of f(0) so that f...

    Text Solution

    |

  14. Let f(x)={{:((e^(alphax)-e^x)/x^2, x ne 0),(3//2,x=0):} The value of a...

    Text Solution

    |

  15. Let f be a continuous function on R such that f(1//2^n) =(sin e^n) e^...

    Text Solution

    |

  16. Let f(x)=lim(n to oo) sinx/(1+(2 sin x)^(2n)) then f is discontinuous ...

    Text Solution

    |

  17. Let f be a non-zero continuous function satisfying f(x+y)=f(x)f(y) for...

    Text Solution

    |

  18. Let f be a function on [0,1] defined by f(x)=(1//2)^n , (1//2)^(n+1) ...

    Text Solution

    |

  19. If f(x) is continuous at x=0, where f(x)={:{((sin (a+1)x+sin x)/(x)",...

    Text Solution

    |

  20. Let f(x)={(72^x -9^x- 8^x +1)/(sqrt2-sqrt(1+cosx)) ; x != 0 and k lo...

    Text Solution

    |