Home
Class 12
MATHS
If f(x)=(2-(256-7x)^(1//8))/((5x+32)^(1/...

If `f(x)=(2-(256-7x)^(1//8))/((5x+32)^(1//5)-2) ( x ne 0)` , then for f to be continuous on [-1,1] , f(0) is equal to

A

`-1`

B

1

C

`2^6`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(0) \) such that the function \( f(x) = \frac{2 - (256 - 7x)^{1/8}}{(5x + 32)^{1/5} - 2} \) is continuous on the interval \([-1, 1]\), we need to evaluate the limit of \( f(x) \) as \( x \) approaches 0. ### Step-by-Step Solution: 1. **Substituting \( x = 0 \)**: \[ f(0) = \frac{2 - (256 - 7 \cdot 0)^{1/8}}{(5 \cdot 0 + 32)^{1/5} - 2} = \frac{2 - (256)^{1/8}}{(32)^{1/5} - 2} \] 2. **Calculating \( (256)^{1/8} \)**: \[ (256)^{1/8} = (2^8)^{1/8} = 2 \] Thus, the numerator becomes: \[ 2 - 2 = 0 \] 3. **Calculating \( (32)^{1/5} \)**: \[ (32)^{1/5} = (2^5)^{1/5} = 2 \] Thus, the denominator becomes: \[ 2 - 2 = 0 \] 4. **Indeterminate Form**: Since both the numerator and denominator approach 0, we have the indeterminate form \( \frac{0}{0} \). We will apply L'Hôpital's Rule. 5. **Applying L'Hôpital's Rule**: We differentiate the numerator and denominator separately. - **Numerator**: \[ \text{Let } g(x) = 2 - (256 - 7x)^{1/8} \] The derivative \( g'(x) \) is: \[ g'(x) = 0 - \frac{1}{8}(256 - 7x)^{-7/8} \cdot (-7) = \frac{7}{8}(256 - 7x)^{-7/8} \] - **Denominator**: \[ \text{Let } h(x) = (5x + 32)^{1/5} - 2 \] The derivative \( h'(x) \) is: \[ h'(x) = \frac{1}{5}(5x + 32)^{-4/5} \cdot 5 = (5x + 32)^{-4/5} \] 6. **Taking the Limit Again**: Now we compute the limit: \[ \lim_{x \to 0} \frac{g'(x)}{h'(x)} = \lim_{x \to 0} \frac{\frac{7}{8}(256 - 7x)^{-7/8}}{(5x + 32)^{-4/5}} \] Substituting \( x = 0 \): \[ = \frac{\frac{7}{8}(256)^{-7/8}}{(32)^{-4/5}} = \frac{\frac{7}{8}(2)^{-7}}{(2)^{-4}} = \frac{\frac{7}{8} \cdot \frac{1}{128}}{\frac{1}{16}} = \frac{7}{8} \cdot \frac{16}{128} = \frac{7}{8} \cdot \frac{1}{8} = \frac{7}{64} \] ### Conclusion: Thus, for \( f \) to be continuous at \( x = 0 \), we have: \[ f(0) = \frac{7}{64} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Numberical Answer)|16 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Single Correct Answer)|10 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples Level 1 (Single Correct Answer)|52 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Thevalueof lim_(x rarr0)(2-(256-7x)^(1/8))/((5x+32)^(1/5)-2) is

The value of f(0) so that the function f(x)=(2-(256-7x)^((1)/(8)))/((5x+32)^(1/5)-2),x!=0 is continuous everywhere,is given by -1( b) 1(c)26 (d) none of these

If f(x+1)=2x+7 then f(0) is equal to

If f(x)=((256+ax)^((1)/(8))-2)/((32+bx)^((1)/(5))-2) is continuous at x=0 then the value of (a)/(b) is

Let f(x) = sin"" 1/x, x ne 0 Then f(x) can be continuous at x =0

If f(x)={((1)/(1+e^(1//x))"," ,x ne 0),(0",", x =0):} then f(x) is :

MCGROW HILL PUBLICATION-LIMITS AND CONTINUITY-Solved Examples Level 2 (Single Correct Answer)
  1. Let f(x)=g(x)(e^(1//x) -e^(-1//x))/(e^(1//x) + e^(-1//x)), where g is ...

    Text Solution

    |

  2. The value of f(0) , so that the function f(x) = (sqrt(a^(2)-ax+x^(3)...

    Text Solution

    |

  3. If f(x)=(2-(256-7x)^(1//8))/((5x+32)^(1//5)-2) ( x ne 0) , then for f ...

    Text Solution

    |

  4. Let f(x)=(x(1+acosx)-bsinx)/(x^3), x!=0 and f(0)=1.The value of a and...

    Text Solution

    |

  5. f(x)={{:((3//x^2)sin2x^2,"if" x lt 0),((x^2+2x+c)/(1-3x^2), "if" x ge ...

    Text Solution

    |

  6. The function f(x)=(sin 2x)^(tan^(2)2x) is not defined at x=(pi)/(4). T...

    Text Solution

    |

  7. Let f(x)=(log (1+x+x^2)+log(1-x+x^2))/(sec x-cosx) , x ne 0 .Then the ...

    Text Solution

    |

  8. The value of k(k gt 0) for which the function f(x)=(e^x-1)^4/(sin(x^2/...

    Text Solution

    |

  9. The function f(x) = (log(1+ax)-log(1-bx))/(x) is not defined at x = 0....

    Text Solution

    |

  10. Let f(x)=log(1+x^2)/(x^4-26x^2+25Then 1)f is continuous on ([6,10](2) ...

    Text Solution

    |

  11. Let f(x)=(sin (pi cos^2 x))/x^2 , x ne 0 . The value of f(0) so that f...

    Text Solution

    |

  12. Let f(x)={{:((e^(alphax)-e^x)/x^2, x ne 0),(3//2,x=0):} The value of a...

    Text Solution

    |

  13. Let f be a continuous function on R such that f(1//2^n) =(sin e^n) e^...

    Text Solution

    |

  14. Let f(x)=lim(n to oo) sinx/(1+(2 sin x)^(2n)) then f is discontinuous ...

    Text Solution

    |

  15. Let f be a non-zero continuous function satisfying f(x+y)=f(x)f(y) for...

    Text Solution

    |

  16. Let f be a function on [0,1] defined by f(x)=(1//2)^n , (1//2)^(n+1) ...

    Text Solution

    |

  17. If f(x) is continuous at x=0, where f(x)={:{((sin (a+1)x+sin x)/(x)",...

    Text Solution

    |

  18. Let f(x)={(72^x -9^x- 8^x +1)/(sqrt2-sqrt(1+cosx)) ; x != 0 and k lo...

    Text Solution

    |

  19. Let f be a function defined on R by f(x)=[x] + sqrt(x-[x]) then

    Text Solution

    |

  20. The function f : R ~ {0} to R given by f(x)=(tan x-x)/(x-sinx) can be ...

    Text Solution

    |