Home
Class 9
MATHS
x^2+5sqrt(5)x+30...

`x^2+5sqrt(5)x+30`

Text Solution

AI Generated Solution

The correct Answer is:
To factor the polynomial \( x^2 + 5\sqrt{5}x + 30 \), we can follow these steps: ### Step 1: Identify coefficients The polynomial is in the standard form \( ax^2 + bx + c \). Here, we have: - \( a = 1 \) - \( b = 5\sqrt{5} \) - \( c = 30 \) ### Step 2: Calculate the discriminant The discriminant \( D \) is given by the formula: \[ D = b^2 - 4ac \] Substituting the values of \( a \), \( b \), and \( c \): \[ D = (5\sqrt{5})^2 - 4 \cdot 1 \cdot 30 \] Calculating \( (5\sqrt{5})^2 \): \[ (5\sqrt{5})^2 = 25 \cdot 5 = 125 \] Now substituting this back into the discriminant: \[ D = 125 - 120 = 5 \] Since \( D > 0 \), the roots are real and distinct. ### Step 3: Factor the quadratic We need to express the middle term \( 5\sqrt{5}x \) in terms of two numbers that multiply to \( ac = 30 \) and add to \( b = 5\sqrt{5} \). We can express \( 30 \) as: \[ 30 = 3 \cdot 10 \] Next, we can express \( 10 \) in terms of square roots: \[ 10 = 2\sqrt{5} \cdot \sqrt{5} \] Now we can rewrite \( 30 \) as: \[ 30 = 3\sqrt{5} \cdot 2\sqrt{5} \] This gives us the two numbers \( 3\sqrt{5} \) and \( 2\sqrt{5} \). ### Step 4: Rewrite the polynomial Now we can rewrite the polynomial: \[ x^2 + 3\sqrt{5}x + 2\sqrt{5}x + 30 \] Grouping the terms: \[ = (x^2 + 3\sqrt{5}x) + (2\sqrt{5}x + 30) \] ### Step 5: Factor by grouping Now we can factor by grouping: \[ = x(x + 3\sqrt{5}) + 2\sqrt{5}(x + 3\sqrt{5}) \] Now we can factor out the common term \( (x + 3\sqrt{5}) \): \[ = (x + 3\sqrt{5})(x + 2\sqrt{5}) \] ### Final Answer Thus, the factorization of the polynomial \( x^2 + 5\sqrt{5}x + 30 \) is: \[ (x + 3\sqrt{5})(x + 2\sqrt{5}) \]

To factor the polynomial \( x^2 + 5\sqrt{5}x + 30 \), we can follow these steps: ### Step 1: Identify coefficients The polynomial is in the standard form \( ax^2 + bx + c \). Here, we have: - \( a = 1 \) - \( b = 5\sqrt{5} \) - \( c = 30 \) ...
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3D|7 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3E|10 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3B|40 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Given possible expression for the length and breadth of each of the following rectangles if. (i) Area =(x^(2)+5sqrt5x+30) sq.unit. (ii) Area =(24 x^(2)-26x-8) sq. unit

Factorize (i) x^2+5sqrt(3)x +12 (ii) x^2+3sqrt(3)x-30

The zeros of the polynomial 4x^(2)+5sqrt(2)x-3 are :

factorise 5sqrt(5)x^(2)+30x+8sqrt(5)

Factorize of the expression: 5sqrt(5)x^(2)+30x+8sqrt(5)

If p(x)=x^2-5sqrt5x+1 then p(sqrt5)=

Solve for x x ^(2) + 5 sqrt5x - 70 =0

Solve: sqrt(5)x^(2) + x + sqrt(5) = 0

Factorize: 2x^(2)+3sqrt(5)x+5