Home
Class 9
MATHS
2(x+y)^2-9(x+y)-5...

`2(x+y)^2-9(x+y)-5`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the polynomial \( 2(x+y)^2 - 9(x+y) - 5 \), we can follow these steps: ### Step 1: Substitute \( p \) for \( x + y \) Let \( p = x + y \). Then, the expression becomes: \[ 2p^2 - 9p - 5 \] ### Step 2: Factor the quadratic expression We need to factor \( 2p^2 - 9p - 5 \). To do this, we look for two numbers that multiply to \( 2 \times (-5) = -10 \) and add up to \( -9 \). The numbers that satisfy this are \( -10 \) and \( 1 \). ### Step 3: Rewrite the quadratic Now, we can rewrite the quadratic expression using these numbers: \[ 2p^2 - 10p + 1p - 5 \] ### Step 4: Group the terms Next, we group the terms: \[ (2p^2 - 10p) + (1p - 5) \] ### Step 5: Factor by grouping Now, we factor out the common factors from each group: \[ 2p(p - 5) + 1(p - 5) \] ### Step 6: Factor out the common binomial Now, we can factor out the common binomial \( (p - 5) \): \[ (p - 5)(2p + 1) \] ### Step 7: Substitute back for \( p \) Now, we substitute back \( p = x + y \): \[ (x + y - 5)(2(x + y) + 1) \] ### Final Answer Thus, the factorization of the polynomial \( 2(x+y)^2 - 9(x+y) - 5 \) is: \[ (x + y - 5)(2(x + y) + 1) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3D|7 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3E|10 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3B|40 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Simplify : (i) (5x - 9y) - (-7x + y) (ii) (x^(2) -x) -(1)/(2)(x - 3 + 3x^(2)) (iii) [7 - 2x + 5y - (x -y)]-(5x + 3y -7) (iv) ((1)/(3)y^(2) - (4)/(7)y + 5) - ((2)/(7)y - (2)/(3)y^(2) + 2) - ((1)/(7)y - 3 + 2y^(2))

The internal centre of similitude of two circles (x-3)^(2)+(y-2)^(2)-9,(x+5)^(2)+(y+6)^(2)=9 is

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

If one end of a diameter of the circle 3x^(2)+3y^(2)-9x+6y+5=0 is (1,2), then the other end is

Factorize :7(2x+5)+3(2x+5)(x+2)y+(x+2)x5a(2x+3y)-2b(2x+3y)8(5x+9y)^(2)+12(5x+9y)

x"@"y=(x+y)^(2) x#y=(x-y)^(2) Find the value of (9#7)"@"(21#5):

(5x + 3y) (5x-3y) (25x ^ (2) + 9y ^ (2))