Home
Class 12
MATHS
Evaluate lim(ntooo) {cos((x)/(2))cos((x)...

Evaluate `lim_(ntooo) {cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))}`.

Text Solution

AI Generated Solution

To evaluate the limit \[ \lim_{n \to \infty} \left( \cos\left(\frac{x}{2}\right) \cos\left(\frac{x}{4}\right) \cos\left(\frac{x}{8}\right) \cdots \cos\left(\frac{x}{2^n}\right) \right), \] we can use the product-to-sum formula for cosines, which states that: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.1|10 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.2|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate ("lim")_(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

We have f (x) lim_(n to oo) cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4)) …… …. cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo) lim_(x to 0) f(x) equals

Evaluate: lim_(x->0) (1-cos2x)/(x^2)

Evaluate : lim_(x to 0) (e^(cos x)-1)/(cos x)

8*sin(x/8)*cos(x/2)*cos(x/4)*cos(x/8)=

Evaluate: ("lim")_(xrarr0)8/(x^8){1-cos((x^2)/2)-cos((x^2)/4)+cos((x^2)/2)cos((x^2)/4)}

Evaluate lim_(x to (pi)/(4)) (cos x - "sin" x)/(cos 2x)

lim_(x to 0) (cos 2x-1)/(cos x-1)