Home
Class 12
MATHS
If f(x)=(tanx)/(x), then find lim(xto0)(...

If `f(x)=(tanx)/(x)`, then find `lim_(xto0)([f(x)]+x^(2))^((1)/({f(x)}))`, where `[.]` and `{.}` denotes greatest integer and fractional part function respectively.

Text Solution

Verified by Experts

We know that `underset(xto0)lim(tanx)/(x)=1^(+)`
`:." "underset(xto0)lim[(tanx)/(x)]=1`
and `underset(xto0)lim{(tanx)/(x)}=underset(xto0)lim((tanx)/(x)-[(tanx)/(x)])`
`=underset(xto0)lim((tanx)/(x)-1)`
`:." "underset(xto0)lim([f(x)]+x^(2))^((1)/({f(s)}))=underset(xto0)lim(1+x^(2))^(underset(xto0)lim((1)/(tanx))/(x)-1)`
`=e^(underset(xto0)lim((x^(2))/(tanx))/(x)-1)`
`=e^(underset(xto0)lim(x^(3)cosx)/(sinx-xcosx))`
`=e^(underset(xto0)lim(x^(3))/((x+(x^(3))/(3!)+...)-x(1-(x^(2))/(2!)+...)))`
`=e^(underset(xto0)lim(x^(3))/(-(x^(3))/(3!)+(x^(3))/(2!)))=e^(3)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.1|10 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.2|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Solve : [x]^(2)=x+2{x}, where [.] and {.} denote the greatest integer and the fractional part functions, respectively.

f(x)=[x^(2)]-{x}^(2), where [.] and {.} denote the greatest integer function and the fractional part function , respectively , is

If f(x) = [x^2] + sqrt({x}^2 , where [] and {.} denote the greatest integer and fractional part functions respectively,then

Solve 2[x]=x+{x},where [.] and {} denote the greatest integer function and the fractional part function, respectively.

Domain of f(x)=sin^(-1)(([x])/({x})) , where [*] and {*} denote greatest integer and fractional parts.

If lim_(xto oo)([f(x)]+x^(2)){f(x)}=k , where f(x)=(tanx)/x and [.],{.} denote geatest integer and fractional part of x respectively, the value of [k//e] is ………..

lim_(xtoc)f(x) does not exist when where [.] and {.} denotes greatest integer and fractional part of x

Range of the function f defined by (x) =[(1)/(sin{x})] (where [.] and {x} denotes greatest integer and fractional part of x respectively) is

The number of non differentiability of point of function f (x) = min ([x] , {x}, |x - (3)/(2)|) for x in (0,2), where [.] and {.} denote greatest integer function and fractional part function respectively.

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to