Home
Class 12
MATHS
If f(x)=sgn(x)" and "g(x)=x^(3),then pro...

If `f(x)=sgn(x)" and "g(x)=x^(3)`,then prove that `lim_(xto0) f(x).g(x)` exists though `lim_(xto0) f(x)` does not exist.

Text Solution

AI Generated Solution

To prove that \( \lim_{x \to 0} f(x) \cdot g(x) \) exists while \( \lim_{x \to 0} f(x) \) does not exist, we will analyze the functions \( f(x) = \text{sgn}(x) \) and \( g(x) = x^3 \). ### Step-by-Step Solution: 1. **Understanding the Functions**: - The signum function \( f(x) = \text{sgn}(x) \) is defined as: \[ f(x) = ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.3|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.

If lim_(x->a)(f(x)/(g(x))) exists, then

If f(x)=(|x|)/(x) , then show that lim_(xrarr0) f(x) does not exist.

Show that, lim_(xto4) (|x-4|)/(x-4) , does not exist

If f(x) = [x] – [x/4] , x ∈ R, where [x] denotes the greatest integer function, then : (1) lim f(x) (x→4-)exists but lim f(x) (x→4+) does not exist. (2) Both lim f(x) (x→4-) and lim f(x) (x→4+) exist but are not equal. (3) lim f(x) (x→4+) exists but lim f(x) (x→4-) does not exist. (4) f is continuous at x = 4.

Show that Lim_( xto 2) (|x-2|)/(x-2) does not exist .

Given f(x)={((x+|x|)/x,x!=0),(-2,x=0):} show that lim_(xto0)f(x) does not exist.

Prove that Lim_(x to 0) (|x|)/x , x != 0 does not exist .

Evaluate : lim_(xto0) (a^(x)-b^(x))/x

Slove lim_(xto0)((1+x)^(1//x)-e)/x