Home
Class 12
MATHS
Find the value of lim(xto0^(+)) (sinx)^(...

Find the value of `lim_(xto0^(+)) (sinx)^((1)/(x))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0^+} (\sin x)^{\frac{1}{x}} \), we can follow these steps: ### Step 1: Rewrite the limit We start with the limit expression: \[ L = \lim_{x \to 0^+} (\sin x)^{\frac{1}{x}} \] ### Step 2: Take the natural logarithm To simplify the limit, we can take the natural logarithm of both sides: \[ \ln L = \lim_{x \to 0^+} \frac{1}{x} \ln(\sin x) \] ### Step 3: Analyze \(\ln(\sin x)\) as \(x \to 0^+\) As \(x\) approaches \(0\), \(\sin x\) approaches \(0\). Therefore, \(\ln(\sin x)\) approaches \(-\infty\). We need to analyze the limit: \[ \ln L = \lim_{x \to 0^+} \frac{\ln(\sin x)}{x} \] ### Step 4: Use L'Hôpital's Rule Since both the numerator and denominator approach \(0\) as \(x \to 0^+\), we can apply L'Hôpital's Rule: \[ \ln L = \lim_{x \to 0^+} \frac{\ln(\sin x)}{x} = \lim_{x \to 0^+} \frac{\frac{d}{dx}(\ln(\sin x))}{\frac{d}{dx}(x)} \] ### Step 5: Differentiate the numerator and denominator The derivative of \(\ln(\sin x)\) is: \[ \frac{d}{dx}(\ln(\sin x)) = \frac{\cos x}{\sin x} = \cot x \] The derivative of \(x\) is \(1\). Therefore, we have: \[ \ln L = \lim_{x \to 0^+} \cot x \] ### Step 6: Evaluate the limit of \(\cot x\) As \(x\) approaches \(0\), \(\cot x\) approaches \(\infty\). Thus: \[ \ln L = \infty \] ### Step 7: Exponentiate to find \(L\) Since \(\ln L = \infty\), we have: \[ L = e^{\infty} = 0 \] ### Final Answer Thus, the value of the limit is: \[ \lim_{x \to 0^+} (\sin x)^{\frac{1}{x}} = 0 \]

To solve the limit \( \lim_{x \to 0^+} (\sin x)^{\frac{1}{x}} \), we can follow these steps: ### Step 1: Rewrite the limit We start with the limit expression: \[ L = \lim_{x \to 0^+} (\sin x)^{\frac{1}{x}} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.3|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0^(+))(sinx)^(x)

Evaluate lim_(xto 0^(+))(sinx)^(tanx)

Evaluate lim_(xto0^(+)) (x)^((1)/(log_(e)sinx)).

Find the value of lim_(xto0^(+)) (3(log_(e)x)^(2)+5log_(e)x+6)/(1+(log_(e)x)^(2)).

Find the value of lim_(xto0) (sinx+log_(e)(sqrt(1+sin^(2)x)-sinx))/(sin^(3)x).

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

Evaluate : lim_(xto 0) (e^(sinx)-1)/x

lim_(xto0)((e^(x)-1)/x)^(1//x)

Evaluate lim_(xto0)|x|^(sinx)