Home
Class 12
MATHS
If (x^(2)+x-2)/(x+3)le(f(x))/(x^(2))le(x...

If `(x^(2)+x-2)/(x+3)le(f(x))/(x^(2))le(x^(2)+2x-1)/(x+3)` holds for a certain interval containing the value of `lim_(xto-1) f(x).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given inequalities and apply the limit to find \( \lim_{x \to -1} f(x) \). ### Step 1: Write down the inequalities We are given the following inequalities: \[ \frac{x^2 + x - 2}{x + 3} \leq \frac{f(x)}{x^2} \leq \frac{x^2 + 2x - 1}{x + 3} \] ### Step 2: Find the limits of the left and right expressions as \( x \to -1 \) We will evaluate the limits of the left and right expressions as \( x \) approaches -1. **Left Expression:** \[ \lim_{x \to -1} \frac{x^2 + x - 2}{x + 3} \] Substituting \( x = -1 \): \[ = \frac{(-1)^2 + (-1) - 2}{-1 + 3} = \frac{1 - 1 - 2}{2} = \frac{-2}{2} = -1 \] **Right Expression:** \[ \lim_{x \to -1} \frac{x^2 + 2x - 1}{x + 3} \] Substituting \( x = -1 \): \[ = \frac{(-1)^2 + 2(-1) - 1}{-1 + 3} = \frac{1 - 2 - 1}{2} = \frac{-2}{2} = -1 \] ### Step 3: Apply the Squeeze Theorem Now we have: \[ \lim_{x \to -1} \frac{f(x)}{x^2} \text{ is squeezed between } -1 \text{ and } -1. \] Thus, by the Squeeze Theorem: \[ \lim_{x \to -1} \frac{f(x)}{x^2} = -1 \] ### Step 4: Solve for \( \lim_{x \to -1} f(x) \) We know: \[ \lim_{x \to -1} \frac{f(x)}{x^2} = -1 \] This implies: \[ \lim_{x \to -1} f(x) = -1 \cdot \lim_{x \to -1} x^2 \] Calculating \( \lim_{x \to -1} x^2 \): \[ \lim_{x \to -1} x^2 = (-1)^2 = 1 \] Thus: \[ \lim_{x \to -1} f(x) = -1 \cdot 1 = -1 \] ### Final Answer \[ \lim_{x \to -1} f(x) = -1 \]

To solve the problem step by step, we will analyze the given inequalities and apply the limit to find \( \lim_{x \to -1} f(x) \). ### Step 1: Write down the inequalities We are given the following inequalities: \[ \frac{x^2 + x - 2}{x + 3} \leq \frac{f(x)}{x^2} \leq \frac{x^2 + 2x - 1}{x + 3} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.3|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If 3-((x^(2))/(12))lef(x)le3+((x^(3))/(9)) in the neighborhood of x=0, then find the value of lim_(xto0) f(x).

If (x^2+x−2)/(x+3) -1) f(x) then find the value of lim_(x->-1) f(x)

Let f(x)=(x^(2)+2)/([x]),1 le x le3 , where [.] is the greatest integer function. Then the least value of f(x) is

f(x)= |{:(cos x,,x,,1),(2sin x ,,x^(2),,2x),(tanx ,, x,,1):}| then find the value of lim_(xto 0) (f(x))/(x)

If f(x)={(x^2+2,,,xge2),(1-x ,,,xlt2):} ; g(x)={(2x,,,xgt1),(3-x ,,,xle1):} then the value of lim_(x->1) f(g(x)) is

If f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))),AA 0 le x le 1 then the minimum value of f(x) is

If the relation f(x)={(2x-3",",x le 2),(x^(3)-a",",x ge2):} is a function, then find the value of a.

Evaluate lim_(xto1) ((2x-3)(sqrt(x)-1))/(2x^(2)+x-3).

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.

If f(x)=lim_(nrarroo) ((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n)) and lim_(xrarrpm1) f(x) exists, then The value of a is