Home
Class 12
MATHS
If lim(xtooo) ((x^(2)+x+1)/(x+1)-ax-b)=4...

If `lim_(xtooo) ((x^(2)+x+1)/(x+1)-ax-b)=4,` then

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to find the values of \( a \) and \( b \) such that: \[ \lim_{x \to \infty} \left( \frac{x^2 + x + 1}{x + 1} - ax - b \right) = 4 \] ### Step 1: Simplify the expression inside the limit Start with the expression: \[ \frac{x^2 + x + 1}{x + 1} - ax - b \] We can combine the terms by finding a common denominator. The common denominator is \( x + 1 \): \[ \frac{x^2 + x + 1 - (ax + b)(x + 1)}{x + 1} \] ### Step 2: Expand the numerator Now, we need to expand the numerator: \[ x^2 + x + 1 - (ax^2 + ax + bx + b) \] This simplifies to: \[ x^2 + x + 1 - ax^2 - (a + b)x - b \] ### Step 3: Combine like terms Combine the like terms in the numerator: \[ (1 - a)x^2 + (1 - a - b)x + (1 + b) \] So we have: \[ \frac{(1 - a)x^2 + (1 - a - b)x + (1 + b)}{x + 1} \] ### Step 4: Divide by \( x \) Now, divide the numerator and the denominator by \( x \): \[ \frac{(1 - a)x + (1 - a - b) + \frac{1 + b}{x}}{1 + \frac{1}{x}} \] ### Step 5: Take the limit as \( x \to \infty \) As \( x \to \infty \), the terms \( \frac{1 + b}{x} \) and \( \frac{1}{x} \) will approach 0. Thus, we are left with: \[ \lim_{x \to \infty} \frac{(1 - a)x + (1 - a - b)}{1} = (1 - a) \cdot \infty + (1 - a - b) \] For the limit to exist and equal to 4, the coefficient of \( x \) must be 0: \[ 1 - a = 0 \implies a = 1 \] ### Step 6: Substitute \( a \) back to find \( b \) Now substitute \( a = 1 \) into the remaining expression: \[ 1 - 1 - b = 4 \implies -b = 4 \implies b = -4 \] ### Conclusion Thus, the values of \( a \) and \( b \) are: \[ a = 1, \quad b = -4 \]

To solve the limit problem, we need to find the values of \( a \) and \( b \) such that: \[ \lim_{x \to \infty} \left( \frac{x^2 + x + 1}{x + 1} - ax - b \right) = 4 \] ### Step 1: Simplify the expression inside the limit ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE MAIN|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If lim_(xtooo) {(x^(2)+1)/(x+1)-(ax+b)}=0, then find the values of a and b.

If lim_(xtooo)((x^(2)+1)/(x+1)-ax-b)=0 , find the values of a and b.

If lim_(xto oo){(x^2+1)/(x+1)-ax-b}=2 , then

If lim_(xto oo){(x^2+1)/(x+1)-(ax+b)}to oo , then

If lim_(x->oo) (sqrt(x^2-x+1)-ax-b)=0 then the value of a and b are given by:

Evaluate lim_(xtooo) x^((1)/(x)).

If lim_(xtooo)(1+a/x+b/(x^(2)))^(2x)=e^2 then values of a and b are

If lim_(xtooo) f(x) exists and is finite and nonzero and if lim_(xtooo) {f(x)+(3f(x)-1)/(f^(2)(x))}=3 , then the value of lim_(xtooo) f(x)" is " _______.

If l=lim_(xtooo)((x+1)/(x-1))^(x) , the value of {l} and [l] are

Evaluate lim_(xtooo) (log_(e)x)/(x)