Home
Class 12
MATHS
The value of lim(n to oo) ((1^(2)+2^(2)+...

The value of `lim_(n to oo) ((1^(2)+2^(2)+………+n^(2))(1^(3)+2^(3)+……….+n^(3))(1^(4)+2^(4)+…………n^(4)))/((1^(5)+2^(5)+…………+n^(5))^(2)))` is equal to

A

`3/5`

B

`4/5`

C

`2/5`

D

`1/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given limit problem, we will break it down step by step. ### Step 1: Rewrite the limit expression We start with the limit expression: \[ \lim_{n \to \infty} \frac{(1^2 + 2^2 + \ldots + n^2)(1^3 + 2^3 + \ldots + n^3)(1^4 + 2^4 + \ldots + n^4)}{(1^5 + 2^5 + \ldots + n^5)^2} \] ### Step 2: Use the formulas for sums of powers We can use the formulas for the sums of powers: - \(1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}\) - \(1^3 + 2^3 + \ldots + n^3 = \left(\frac{n(n+1)}{2}\right)^2\) - \(1^4 + 2^4 + \ldots + n^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30}\) - \(1^5 + 2^5 + \ldots + n^5 = \left(\frac{n(n+1)}{2}\right)^2 \cdot \frac{(2n^2 + 2n - 1)}{3}\) ### Step 3: Substitute the formulas into the limit Substituting these formulas into our limit expression, we get: \[ \lim_{n \to \infty} \frac{\left(\frac{n(n+1)(2n+1)}{6}\right) \left(\frac{n(n+1)}{2}\right)^2 \left(\frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30}\right)}{\left(\left(\frac{n(n+1)}{2}\right)^2 \cdot \frac{(2n^2 + 2n - 1)}{3}\right)^2} \] ### Step 4: Simplify the expression Now we simplify the numerator and denominator: - The numerator becomes: \[ \frac{n^4(n+1)^3(2n+1)(3n^2 + 3n - 1)}{360} \] - The denominator becomes: \[ \frac{n^4(n+1)^4(2n^2 + 2n - 1)^2}{36} \] ### Step 5: Cancel common terms Now we can cancel \(n^4\) and \((n+1)^3\) from the numerator and denominator: \[ \lim_{n \to \infty} \frac{(2n+1)(3n^2 + 3n - 1)}{10(n+1)(2n^2 + 2n - 1)^2} \] ### Step 6: Evaluate the limit As \(n\) approaches infinity, we can approximate: - \(2n + 1 \approx 2n\) - \(3n^2 + 3n - 1 \approx 3n^2\) - \(2n^2 + 2n - 1 \approx 2n^2\) Thus, we have: \[ \lim_{n \to \infty} \frac{(2n)(3n^2)}{10(n)(2n^2)^2} = \lim_{n \to \infty} \frac{6n^3}{10 \cdot 4n^5} = \lim_{n \to \infty} \frac{6}{40n^2} = 0 \] ### Step 7: Final value Thus, the value of the limit is: \[ \frac{3}{5} \]

To solve the given limit problem, we will break it down step by step. ### Step 1: Rewrite the limit expression We start with the limit expression: \[ \lim_{n \to \infty} \frac{(1^2 + 2^2 + \ldots + n^2)(1^3 + 2^3 + \ldots + n^3)(1^4 + 2^4 + \ldots + n^4)}{(1^5 + 2^5 + \ldots + n^5)^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

lim_(n to oo)(1-2n^(2))/(5n^(2)-n+100)=

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

The value of lim_(n to oo)((n!)/(n^(n)))^((2n^(4)+1)/(5n^(5)+1)) is equal

The value of lim_(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+..........+(n^(2))/(n^(3)+n^(3))) is :

The value of lim_(nrarroo)(1^(2)-2^(2)+3^(2)-4^(2)+5^(2)….+(2n+1)^(2))/(n^(2)) is equal to

Evaluate lim_(ntooo) ((1^(2)-2^(2)+3^(2)-4^(2)+5^(2)+...n" terms"))/(n^(2)).

Evaluate lim _( x to oo) ((1^(2) )/(n ^(3) +1 ^(3))+(2 ^(2))/(n ^(3) +2 ^(3)) + (3 ^(2))/(n ^(3)+ 3 ^(3))+ .... + (4)/(9n)).

Evaluate: ("lim")_(n to oo)((1^2+2^2+3^3++n^2)(1^3+2^3+3^3++n^3))/(1^6+2^6+3^6++n^6)

The value of lim_(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+(n-1)^(2))] is :

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. IfSn=[1/(1+sqrt(n))+1/(2+sqrt(2n))++1/(n+sqrt(n^2))],t h e n(lim)(n ra...

    Text Solution

    |

  2. The value of ("lim")(nvecoo)sum(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+s...

    Text Solution

    |

  3. The value of lim(n to oo) ((1^(2)+2^(2)+………+n^(2))(1^(3)+2^(3)+……….+n^...

    Text Solution

    |

  4. T h ev a l u eof(lim)(nvecoo)[t a npi/(2n)tan(2pi)/(2n)dottan(npi)/(2n...

    Text Solution

    |

  5. int(2-a)^(2+a)f(x)dx is equal to [where f(2-alpha)=f(2+alpha) AAalpha ...

    Text Solution

    |

  6. If f(x) = min({x}, {-x}) x in R, where {x} denotes the fractional par...

    Text Solution

    |

  7. Which of the following is incorrect ?

    Text Solution

    |

  8. ∫ 1 / 2 − 1 int(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))

    Text Solution

    |

  9. Ifint(log2)^x(dy)/(sqrt(e^y-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  10. evaluvate int(5/2)^5(sqrt((25-x^2)^3))/(x^4)dx (A)pi/6 (b) (2pi)/...

    Text Solution

    |

  11. If f(x) satisfies the condition of Rolle's theorem in [1,2], then int1...

    Text Solution

    |

  12. The value of the integral int0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

    Text Solution

    |

  13. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  14. int0^oo(dx)/([x+sqrt(x^2+1)]^3)is equal to (a)3/8 (b) 1/8 (c) -3/8 ...

    Text Solution

    |

  15. If f(y)=e^y,g(y)=y,y>0, and F(t)=int0^t f(t-y)g(y) dy, then

    Text Solution

    |

  16. If P(x) is a polynomial of the least degree that has a maximum equal ...

    Text Solution

    |

  17. The numbers of possible continuous f(x) defined in [0,1] for which I1...

    Text Solution

    |

  18. Suppose that F (x) is an antiderivative of f (x)=sinx/x,x>0 , then...

    Text Solution

    |

  19. int(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx is equal to ...

    Text Solution

    |

  20. Evaluate the definite integrals int(0)^(pi//4)(sinx+cosx)/(25-16(...

    Text Solution

    |