Home
Class 12
MATHS
T h ev a l u eof(lim)(nvecoo)[t a npi/(2...

`T h ev a l u eof(lim)_(nvecoo)[t a npi/(2n)tan(2pi)/(2n)dottan(npi)/(2n)]^(1//n)i s` `e` (b) `e^2` (c) 1 (d) `e^3`

A

`e`

B

`e^(2)`

C

`1`

D

`e^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate the expression: \[ \lim_{n \to \infty} \left( \tan\left(\frac{\pi}{2n}\right) \tan\left(\frac{2\pi}{2n}\right) \cdots \tan\left(\frac{n\pi}{2n}\right) \right)^{\frac{1}{n}} \] Let's denote this limit as \( a \): \[ a = \lim_{n \to \infty} \left( \tan\left(\frac{\pi}{2n}\right) \tan\left(\frac{2\pi}{2n}\right) \cdots \tan\left(\frac{n\pi}{2n}\right) \right)^{\frac{1}{n}} \] ### Step 1: Taking the logarithm Taking the natural logarithm of both sides, we have: \[ \log a = \lim_{n \to \infty} \frac{1}{n} \log \left( \tan\left(\frac{\pi}{2n}\right) \tan\left(\frac{2\pi}{2n}\right) \cdots \tan\left(\frac{n\pi}{2n}\right) \right) \] Using the property of logarithms, we can express this as: \[ \log a = \lim_{n \to \infty} \frac{1}{n} \left( \log \tan\left(\frac{\pi}{2n}\right) + \log \tan\left(\frac{2\pi}{2n}\right) + \cdots + \log \tan\left(\frac{n\pi}{2n}\right) \right) \] ### Step 2: Expressing the sum in terms of an integral As \( n \to \infty \), we can approximate the sum by an integral. The argument of the tangent function can be rewritten as: \[ \frac{k\pi}{2n} \quad \text{for } k = 1, 2, \ldots, n \] Thus, we can express the sum as: \[ \sum_{k=1}^{n} \log \tan\left(\frac{k\pi}{2n}\right) \approx n \int_{0}^{1} \log \tan\left(\frac{\pi x}{2}\right) \, dx \] ### Step 3: Evaluating the limit Substituting this back into our expression for \( \log a \): \[ \log a = \lim_{n \to \infty} \frac{1}{n} \cdot n \int_{0}^{1} \log \tan\left(\frac{\pi x}{2}\right) \, dx = \int_{0}^{1} \log \tan\left(\frac{\pi x}{2}\right) \, dx \] ### Step 4: Evaluating the integral Now, we need to evaluate the integral: \[ I = \int_{0}^{1} \log \tan\left(\frac{\pi x}{2}\right) \, dx \] Using the property of definite integrals, we can also express: \[ I = \int_{0}^{1} \log \cot\left(\frac{\pi x}{2}\right) \, dx \] Adding these two integrals gives: \[ 2I = \int_{0}^{1} \log \tan\left(\frac{\pi x}{2}\right) \, dx + \int_{0}^{1} \log \cot\left(\frac{\pi x}{2}\right) \, dx = \int_{0}^{1} \log(1) \, dx = 0 \] Thus, we find that: \[ I = 0 \] ### Step 5: Finding \( a \) Since \( \log a = 0 \), we have: \[ a = e^0 = 1 \] ### Conclusion The value of the limit is: \[ \boxed{1} \]

To solve the limit problem, we need to evaluate the expression: \[ \lim_{n \to \infty} \left( \tan\left(\frac{\pi}{2n}\right) \tan\left(\frac{2\pi}{2n}\right) \cdots \tan\left(\frac{n\pi}{2n}\right) \right)^{\frac{1}{n}} \] Let's denote this limit as \( a \): ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo) [tan(pi/(2n)) tan((2pi)/(2n))........tan((npi)/(2n))]^(1/n) is

The value of ("lim")_(nvec0)[1/n+(e^(1/n))/n+(e^(2/n))/n++(e^((n-1)/n))/n]i s 1 (b) 0 (c) e-1 (d) e+1

Evaluate lim_(nrarroo)(2)/(n)(sin.(pi)/(2n)+sin.(2pi)/(2n)+sin.(3pi)/(2n)+....+sin.(npi)/(2n))

Lt_(nrarroo)((n!)/n^n)^(1/n)= (A) e^(-2) (B) e^(-1) (C) e^3 (D) e

The value of lim_(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^((n-1)//n))/(n)] is

The value of lim_(ntooo)(e^(n))/((1+(1)/(n))^(n^(2))) is (a) -1 (b) 0 (c) 1 (d) ∞

The value of lim_(nrarroo)((e^((1)/(n)))/(n^(2))+(2e^((2)/(n)))/(n^(2))+(3e^((3)/(n)))/(n^(2))+…+(2e^(2))/(n)) is

sum_(i=1)^(2n) sin^(-1)(x_i)=npi then the value of sum_(i=1)^n cos^(-1)x_i+sum_(i=1)^n tan^(-1)x_i= (A) (npi)/4 (B) (2/3)npi (C) (5/4)npi (D) 2npi

If 2^n=1024 , t h e n\ 2^(n/2+2) = (a)64 (b) 128 (c)256 (d) 512

If tan ptheta+cotqtheta=0 , then the genera value of theta is (A) ((2n-1)pi)/(2(p-q)) (B) (npi)/(p-q) (C) (npi)/(p+q) (D) ((2n+1)pi)/(2(p-q))

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. The value of ("lim")(nvecoo)sum(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+s...

    Text Solution

    |

  2. The value of lim(n to oo) ((1^(2)+2^(2)+………+n^(2))(1^(3)+2^(3)+……….+n^...

    Text Solution

    |

  3. T h ev a l u eof(lim)(nvecoo)[t a npi/(2n)tan(2pi)/(2n)dottan(npi)/(2n...

    Text Solution

    |

  4. int(2-a)^(2+a)f(x)dx is equal to [where f(2-alpha)=f(2+alpha) AAalpha ...

    Text Solution

    |

  5. If f(x) = min({x}, {-x}) x in R, where {x} denotes the fractional par...

    Text Solution

    |

  6. Which of the following is incorrect ?

    Text Solution

    |

  7. ∫ 1 / 2 − 1 int(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))

    Text Solution

    |

  8. Ifint(log2)^x(dy)/(sqrt(e^y-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  9. evaluvate int(5/2)^5(sqrt((25-x^2)^3))/(x^4)dx (A)pi/6 (b) (2pi)/...

    Text Solution

    |

  10. If f(x) satisfies the condition of Rolle's theorem in [1,2], then int1...

    Text Solution

    |

  11. The value of the integral int0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

    Text Solution

    |

  12. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  13. int0^oo(dx)/([x+sqrt(x^2+1)]^3)is equal to (a)3/8 (b) 1/8 (c) -3/8 ...

    Text Solution

    |

  14. If f(y)=e^y,g(y)=y,y>0, and F(t)=int0^t f(t-y)g(y) dy, then

    Text Solution

    |

  15. If P(x) is a polynomial of the least degree that has a maximum equal ...

    Text Solution

    |

  16. The numbers of possible continuous f(x) defined in [0,1] for which I1...

    Text Solution

    |

  17. Suppose that F (x) is an antiderivative of f (x)=sinx/x,x>0 , then...

    Text Solution

    |

  18. int(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx is equal to ...

    Text Solution

    |

  19. Evaluate the definite integrals int(0)^(pi//4)(sinx+cosx)/(25-16(...

    Text Solution

    |

  20. int- 1^1(e^(-1/ x))/(x^2(1+e^(-2/ x)))dx is equal to :

    Text Solution

    |