Home
Class 12
MATHS
int(2-a)^(2+a)f(x)dx is equal to [where ...

`int_(2-a)^(2+a)f(x)dx` is equal to [where `f(2-alpha)=f(2+alpha) AAalpha in R`
(a) 2`int_2^(2+a)f(x)dx` (b) `2int_0^af(x)dx` (c) `2int_2^2f(x)dx` (d) none of these

A

`2int_(2)^(2+a)f(x)dx`

B

`2int_(0)^(a)f(x)dx`

C

`2int_(2)^(2)f(x)dx`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{2-a}^{2+a} f(x) \, dx \) given the condition \( f(2 - \alpha) = f(2 + \alpha) \) for all \( \alpha \in \mathbb{R} \), we can follow these steps: ### Step-by-Step Solution: 1. **Understanding the Symmetry**: The condition \( f(2 - \alpha) = f(2 + \alpha) \) indicates that the function \( f(x) \) is symmetric about the line \( x = 2 \). This means that for any \( x \) value that is a distance \( a \) from 2, the function takes the same value. 2. **Setting Up the Integral**: We need to evaluate the integral: \[ I = \int_{2-a}^{2+a} f(x) \, dx \] 3. **Changing Variables**: To exploit the symmetry, we can make a substitution. Let \( x = 2 + u \), then \( dx = du \). The limits change as follows: - When \( x = 2 - a \), \( u = -a \) - When \( x = 2 + a \), \( u = a \) Therefore, the integral becomes: \[ I = \int_{-a}^{a} f(2 + u) \, du \] 4. **Using the Symmetry**: Using the symmetry property of \( f \): \[ f(2 + u) = f(2 - u) \] Thus, we can rewrite the integral: \[ I = \int_{-a}^{a} f(2 - u) \, du \] 5. **Combining the Integrals**: We can combine both forms of the integral: \[ I = \int_{-a}^{a} f(2 + u) \, du + \int_{-a}^{a} f(2 - u) \, du \] Since both integrals are equal due to symmetry, we can write: \[ I = 2 \int_{0}^{a} f(2 + u) \, du \] 6. **Final Result**: Since \( u \) is just a dummy variable, we can replace \( u \) back to \( x \): \[ I = 2 \int_{2}^{2+a} f(x) \, dx \] ### Conclusion: Thus, we conclude that: \[ \int_{2-a}^{2+a} f(x) \, dx = 2 \int_{2}^{2+a} f(x) \, dx \] This corresponds to option (a).

To solve the integral \( \int_{2-a}^{2+a} f(x) \, dx \) given the condition \( f(2 - \alpha) = f(2 + \alpha) \) for all \( \alpha \in \mathbb{R} \), we can follow these steps: ### Step-by-Step Solution: 1. **Understanding the Symmetry**: The condition \( f(2 - \alpha) = f(2 + \alpha) \) indicates that the function \( f(x) \) is symmetric about the line \( x = 2 \). This means that for any \( x \) value that is a distance \( a \) from 2, the function takes the same value. 2. **Setting Up the Integral**: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_0^a[f(x)+f(-x)]dx= (A) 0 (B) 2int_0^a f(x)dx (C) int_-a^a f(x)dx (D) none of these

Prove that: int_0^(2a)f(x)dx=int_0^(2a)f(2a-x)dxdot

Prove that int_-2^2 f(x^4)dx=2int_0^2 f(x^4)dx

If int_0^af(2a-x)dx=m and int_0^af(x)dx=n, then int_0^(2a) f(x) dx is equal to

If f is an integrable function such that f(2a-x)=f(x), then prove that int_0^(2a)f(x)dx=2int_0^af(x)dx

If int_(a)^(b)f(dx)dx=l_(1), int_(a)^(b)g(x)dx = l_(2) then :

Let f(x)=f(a-x) and g(x)+g(a-x)=4 then int_0^af(x)g(x)dx is equal to (A) 2int_0^af(x)dx (B) int_0^af(x)dx (C) 4int_0^af(x)dx (D) 0

int_n^(n+1)f(x) dx=n^2+n then int_(-1)^1 f(x) dx =

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. The value of lim(n to oo) ((1^(2)+2^(2)+………+n^(2))(1^(3)+2^(3)+……….+n^...

    Text Solution

    |

  2. T h ev a l u eof(lim)(nvecoo)[t a npi/(2n)tan(2pi)/(2n)dottan(npi)/(2n...

    Text Solution

    |

  3. int(2-a)^(2+a)f(x)dx is equal to [where f(2-alpha)=f(2+alpha) AAalpha ...

    Text Solution

    |

  4. If f(x) = min({x}, {-x}) x in R, where {x} denotes the fractional par...

    Text Solution

    |

  5. Which of the following is incorrect ?

    Text Solution

    |

  6. ∫ 1 / 2 − 1 int(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))

    Text Solution

    |

  7. Ifint(log2)^x(dy)/(sqrt(e^y-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  8. evaluvate int(5/2)^5(sqrt((25-x^2)^3))/(x^4)dx (A)pi/6 (b) (2pi)/...

    Text Solution

    |

  9. If f(x) satisfies the condition of Rolle's theorem in [1,2], then int1...

    Text Solution

    |

  10. The value of the integral int0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

    Text Solution

    |

  11. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  12. int0^oo(dx)/([x+sqrt(x^2+1)]^3)is equal to (a)3/8 (b) 1/8 (c) -3/8 ...

    Text Solution

    |

  13. If f(y)=e^y,g(y)=y,y>0, and F(t)=int0^t f(t-y)g(y) dy, then

    Text Solution

    |

  14. If P(x) is a polynomial of the least degree that has a maximum equal ...

    Text Solution

    |

  15. The numbers of possible continuous f(x) defined in [0,1] for which I1...

    Text Solution

    |

  16. Suppose that F (x) is an antiderivative of f (x)=sinx/x,x>0 , then...

    Text Solution

    |

  17. int(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx is equal to ...

    Text Solution

    |

  18. Evaluate the definite integrals int(0)^(pi//4)(sinx+cosx)/(25-16(...

    Text Solution

    |

  19. int- 1^1(e^(-1/ x))/(x^2(1+e^(-2/ x)))dx is equal to :

    Text Solution

    |

  20. If int0^oosinx/xdx=pi/2, then int0^oosin^3x/xdx is equal to

    Text Solution

    |