Home
Class 12
MATHS
If f(x) = min({x}, {-x}) x in R, where ...

If `f(x) = min({x}, {-x}) x in R`, where {x} denotes the fractional part of x, then `int_(-100)^(100)f(x)dx` is

A

(a) 50

B

(b) 100

C

(c) 200

D

(d) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-100}^{100} f(x) \, dx \) where \( f(x) = \min(\{x\}, \{-x\}) \) and \( \{x\} \) denotes the fractional part of \( x \), we can follow these steps: ### Step 1: Understand the Function \( f(x) \) The fractional part function \( \{x\} \) is defined as: \[ \{x\} = x - \lfloor x \rfloor \] where \( \lfloor x \rfloor \) is the greatest integer less than or equal to \( x \). For negative \( x \), we have: \[ \{-x\} = -x - \lfloor -x \rfloor = -x + \lfloor x \rfloor + 1 \] Thus, \( f(x) = \min(\{x\}, \{-x\}) \). ### Step 2: Analyze the Function Over One Period The fractional part function \( \{x\} \) is periodic with a period of 1. Therefore, we can analyze \( f(x) \) over the interval \( [0, 1] \) and then extend our findings to the entire interval \( [-100, 100] \). - For \( x \in [0, 1) \): \[ \{x\} = x \quad \text{and} \quad \{-x\} = 1 - x \] Hence, \[ f(x) = \min(x, 1 - x) \] This function reaches its maximum at \( x = 0.5 \) where \( f(0.5) = 0.5 \). ### Step 3: Determine the Behavior of \( f(x) \) - For \( x \in [0, 0.5) \): \[ f(x) = x \] - For \( x \in [0.5, 1) \): \[ f(x) = 1 - x \] ### Step 4: Calculate the Integral Over One Period Now we compute the integral over one period, \( [0, 1] \): \[ \int_0^1 f(x) \, dx = \int_0^{0.5} x \, dx + \int_{0.5}^1 (1 - x) \, dx \] Calculating the first integral: \[ \int_0^{0.5} x \, dx = \left[ \frac{x^2}{2} \right]_0^{0.5} = \frac{(0.5)^2}{2} = \frac{0.25}{2} = 0.125 \] Calculating the second integral: \[ \int_{0.5}^1 (1 - x) \, dx = \left[ x - \frac{x^2}{2} \right]_{0.5}^1 = \left( 1 - \frac{1}{2} \right) - \left( 0.5 - \frac{(0.5)^2}{2} \right) = \frac{1}{2} - \left( 0.5 - 0.125 \right) = \frac{1}{2} - 0.375 = 0.125 \] Thus, \[ \int_0^1 f(x) \, dx = 0.125 + 0.125 = 0.25 \] ### Step 5: Extend the Integral to the Interval \([-100, 100]\) Since \( f(x) \) is periodic with period 1, the integral over \([-100, 100]\) can be calculated as: \[ \int_{-100}^{100} f(x) \, dx = 200 \cdot \int_0^1 f(x) \, dx = 200 \cdot 0.25 = 50 \] ### Final Answer Thus, the value of the integral \( \int_{-100}^{100} f(x) \, dx \) is: \[ \boxed{50} \]

To solve the integral \( \int_{-100}^{100} f(x) \, dx \) where \( f(x) = \min(\{x\}, \{-x\}) \) and \( \{x\} \) denotes the fractional part of \( x \), we can follow these steps: ### Step 1: Understand the Function \( f(x) \) The fractional part function \( \{x\} \) is defined as: \[ \{x\} = x - \lfloor x \rfloor \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

If f(x)={x^2}-({x})^2, where (x) denotes the fractional part of x, then

If {x} denotes the fractional part of x, then int_(0)^(x)({x}-(1)/(2)) dx is equal to

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.

If f(x) ={x} + sin ax (where { } denotes the fractional part function) is periodic, then

If {x} denotes the fractional part of x, then I = int _(0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

The range of f(x) =sin(sin^(-1){x}) . where { ·} denotes the fractional part of x, is

If {x} denotes the fractional part of x, then overset(2)underset(0)int{x} dx is equal to

int_(0)^(4) {sqrt(x)} is equal to, where {x} denotes the fraction part of x.

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. T h ev a l u eof(lim)(nvecoo)[t a npi/(2n)tan(2pi)/(2n)dottan(npi)/(2n...

    Text Solution

    |

  2. int(2-a)^(2+a)f(x)dx is equal to [where f(2-alpha)=f(2+alpha) AAalpha ...

    Text Solution

    |

  3. If f(x) = min({x}, {-x}) x in R, where {x} denotes the fractional par...

    Text Solution

    |

  4. Which of the following is incorrect ?

    Text Solution

    |

  5. ∫ 1 / 2 − 1 int(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))

    Text Solution

    |

  6. Ifint(log2)^x(dy)/(sqrt(e^y-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  7. evaluvate int(5/2)^5(sqrt((25-x^2)^3))/(x^4)dx (A)pi/6 (b) (2pi)/...

    Text Solution

    |

  8. If f(x) satisfies the condition of Rolle's theorem in [1,2], then int1...

    Text Solution

    |

  9. The value of the integral int0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

    Text Solution

    |

  10. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  11. int0^oo(dx)/([x+sqrt(x^2+1)]^3)is equal to (a)3/8 (b) 1/8 (c) -3/8 ...

    Text Solution

    |

  12. If f(y)=e^y,g(y)=y,y>0, and F(t)=int0^t f(t-y)g(y) dy, then

    Text Solution

    |

  13. If P(x) is a polynomial of the least degree that has a maximum equal ...

    Text Solution

    |

  14. The numbers of possible continuous f(x) defined in [0,1] for which I1...

    Text Solution

    |

  15. Suppose that F (x) is an antiderivative of f (x)=sinx/x,x>0 , then...

    Text Solution

    |

  16. int(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx is equal to ...

    Text Solution

    |

  17. Evaluate the definite integrals int(0)^(pi//4)(sinx+cosx)/(25-16(...

    Text Solution

    |

  18. int- 1^1(e^(-1/ x))/(x^2(1+e^(-2/ x)))dx is equal to :

    Text Solution

    |

  19. If int0^oosinx/xdx=pi/2, then int0^oosin^3x/xdx is equal to

    Text Solution

    |

  20. The range of the function f(x)=int(-1)^(1)(sinxdt)/(1+2tcosx+t^(2)) is

    Text Solution

    |