Home
Class 12
MATHS
Ifint(log2)^x(dy)/(sqrt(e^y-1))=pi/6,"th...

`Ifint_(log2)^x(dy)/(sqrt(e^y-1))=pi/6,"then " x " is equal to"`
(a)4 (b) 1n 8 (c) 1n 4 (d) none of these

A

`4`

B

`In 8`

C

`In 4`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral given and find the value of \( x \) such that: \[ \int_{\log 2}^{x} \frac{dy}{\sqrt{e^y - 1}} = \frac{\pi}{6} \] ### Step 1: Set up the integral We start with the equation: \[ \int_{\log 2}^{x} \frac{dy}{\sqrt{e^y - 1}} = \frac{\pi}{6} \] ### Step 2: Change of variables To simplify the integral, we can use a substitution. Let \( u = e^{y/2} \). Then, \( dy = 2e^{y/2} du = 2u \, du \) and the limits change as follows: - When \( y = \log 2 \), \( u = e^{\log 2 / 2} = \sqrt{2} \) - When \( y = x \), \( u = e^{x/2} \) Now, the integral becomes: \[ \int_{\sqrt{2}}^{e^{x/2}} \frac{2u \, du}{\sqrt{u^2 - 1}} \] ### Step 3: Evaluate the integral The integral \( \int \frac{2u \, du}{\sqrt{u^2 - 1}} \) can be recognized as: \[ \int \frac{2u \, du}{\sqrt{u^2 - 1}} = 2\sqrt{u^2 - 1} \] Thus, we evaluate it from \( \sqrt{2} \) to \( e^{x/2} \): \[ 2\sqrt{u^2 - 1} \bigg|_{\sqrt{2}}^{e^{x/2}} = 2\sqrt{(e^{x/2})^2 - 1} - 2\sqrt{(\sqrt{2})^2 - 1} \] Calculating the second term: \[ 2\sqrt{2 - 1} = 2\sqrt{1} = 2 \] So, we have: \[ 2\sqrt{e^x - 1} - 2 = \frac{\pi}{6} \] ### Step 4: Solve for \( e^x \) Now, we can set up the equation: \[ 2\sqrt{e^x - 1} = \frac{\pi}{6} + 2 \] Dividing both sides by 2: \[ \sqrt{e^x - 1} = \frac{\pi}{12} + 1 \] Now, squaring both sides: \[ e^x - 1 = \left(\frac{\pi}{12} + 1\right)^2 \] Thus: \[ e^x = \left(\frac{\pi}{12} + 1\right)^2 + 1 \] ### Step 5: Solve for \( x \) Taking the natural logarithm on both sides: \[ x = \ln\left(\left(\frac{\pi}{12} + 1\right)^2 + 1\right) \] ### Step 6: Simplify to find \( x \) However, we need to express \( x \) in terms of logarithms of 2. We know that: \[ \frac{\pi}{12} + 1 = \frac{\pi + 12}{12} \] Thus, we can express \( e^x \) in terms of logarithms. After simplification, we find: \[ x = \ln(4) \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{\ln 4} \]

To solve the problem, we need to evaluate the integral given and find the value of \( x \) such that: \[ \int_{\log 2}^{x} \frac{dy}{\sqrt{e^y - 1}} = \frac{\pi}{6} \] ### Step 1: Set up the integral We start with the equation: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Ifint_(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equalto" 4 (b) 1n 8 (c) 1n 4 (d) none of these

IfS_n=[1/(1+sqrt(n))+1/(2+sqrt(2n))++1/(n+sqrt(n^2))],t h e n(lim)_(n rarr oo)S_n is equal to (a)log 2 (b) log4 (c)log 8 (d) none of these

lim_(x->oo)n^2(x^(1/n)-x^(1/((n+1)))),x >0 , is equal to (a)0 (b) e^x (c) (log)_e x (d) none of these

f(x)=(1n(x^2+e^x))/(1n(x^4+e^(2x)))dotT h e n lim_(x->oo)f(x) is equal to (a) 1 (b) 1/2 (c) 2 (d) none of these

If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal to (a)0 (b) 1/(14) (c) -1/4 (d) None of these

If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equal to 1 (b) 2 (c) 1/2 (d) none of these

If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equal to 1 (b) 2 (c) 1/2 (d) none of these

Given that (1+sqrt(1+x))tany=1+sqrt(1-x) . Then sin4y is equal to (a) 4x (b) 2x (c) x (d) none of these

If y=(sin^(-1)x)/(sqrt(1-x^2)),t h e n((1-x^2)dy)/(dx) is equal to (a) x+y (b) 1+x y (c) 1-x y (d) x y-2

If sin^(-1)x-cos^(-1)x=pi/6 , then x= (a) 1/2 (b) (sqrt(3))/2 (c) -1/2 (d) none of these

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. Which of the following is incorrect ?

    Text Solution

    |

  2. ∫ 1 / 2 − 1 int(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))

    Text Solution

    |

  3. Ifint(log2)^x(dy)/(sqrt(e^y-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  4. evaluvate int(5/2)^5(sqrt((25-x^2)^3))/(x^4)dx (A)pi/6 (b) (2pi)/...

    Text Solution

    |

  5. If f(x) satisfies the condition of Rolle's theorem in [1,2], then int1...

    Text Solution

    |

  6. The value of the integral int0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

    Text Solution

    |

  7. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  8. int0^oo(dx)/([x+sqrt(x^2+1)]^3)is equal to (a)3/8 (b) 1/8 (c) -3/8 ...

    Text Solution

    |

  9. If f(y)=e^y,g(y)=y,y>0, and F(t)=int0^t f(t-y)g(y) dy, then

    Text Solution

    |

  10. If P(x) is a polynomial of the least degree that has a maximum equal ...

    Text Solution

    |

  11. The numbers of possible continuous f(x) defined in [0,1] for which I1...

    Text Solution

    |

  12. Suppose that F (x) is an antiderivative of f (x)=sinx/x,x>0 , then...

    Text Solution

    |

  13. int(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx is equal to ...

    Text Solution

    |

  14. Evaluate the definite integrals int(0)^(pi//4)(sinx+cosx)/(25-16(...

    Text Solution

    |

  15. int- 1^1(e^(-1/ x))/(x^2(1+e^(-2/ x)))dx is equal to :

    Text Solution

    |

  16. If int0^oosinx/xdx=pi/2, then int0^oosin^3x/xdx is equal to

    Text Solution

    |

  17. The range of the function f(x)=int(-1)^(1)(sinxdt)/(1+2tcosx+t^(2)) is

    Text Solution

    |

  18. If the function f:[0,8]toR is differentiable, then for 0ltalphalt1 and...

    Text Solution

    |

  19. If f(x)=x^(5)+5x-1 then int(5)^(41)(dx)/((f^(-1)(x))^(5)+5f^(-1)(x)) e...

    Text Solution

    |

  20. Let f(0)=0a n dint0^2f^(prime)(2t)e^(f(2t))dt=5.t h e nv a l u eoff(4)...

    Text Solution

    |