Home
Class 12
MATHS
evaluvate int(5/2)^5(sqrt((25-x^2)^3))/(...

evaluvate `int_(5/2)^5(sqrt((25-x^2)^3))/(x^4)dx (A)`pi/6` (b) `(2pi)/3` `(5pi)/6` (d) `pi/3`

A

`(pi)/6`

B

`(2pi)/3`

C

`(5pi)/6`

D

`(pi)/3`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{\frac{5}{2}}^{5} \frac{\sqrt{(25 - x^2)^3}}{x^4} \, dx, \] we will use the substitution method. Let's go through the steps: ### Step 1: Substitution Let \( x = 5 \sin \theta \). Then, we have: \[ dx = 5 \cos \theta \, d\theta. \] ### Step 2: Change the Limits When \( x = \frac{5}{2} \): \[ \sin \theta = \frac{5/2}{5} = \frac{1}{2} \implies \theta = \frac{\pi}{6}. \] When \( x = 5 \): \[ \sin \theta = \frac{5}{5} = 1 \implies \theta = \frac{\pi}{2}. \] Thus, the new limits of integration are from \( \frac{\pi}{6} \) to \( \frac{\pi}{2} \). ### Step 3: Substitute into the Integral Now, substituting \( x \) and \( dx \) into the integral: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\sqrt{(25 - (5 \sin \theta)^2)^3}}{(5 \sin \theta)^4} \cdot (5 \cos \theta) \, d\theta. \] ### Step 4: Simplify the Integrand Calculating \( 25 - (5 \sin \theta)^2 \): \[ 25 - 25 \sin^2 \theta = 25 \cos^2 \theta. \] Thus, \[ \sqrt{(25 \cos^2 \theta)^3} = \sqrt{25^3 \cos^6 \theta} = 125 \cos^3 \theta. \] Now substituting back into the integral: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{125 \cos^3 \theta}{(5^4 \sin^4 \theta)} \cdot (5 \cos \theta) \, d\theta. \] This simplifies to: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{125 \cos^4 \theta}{625 \sin^4 \theta} \, d\theta = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{1}{5} \cdot \frac{\cos^4 \theta}{\sin^4 \theta} \, d\theta = \frac{1}{5} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cot^4 \theta \, d\theta. \] ### Step 5: Integral of \(\cot^4 \theta\) Using the identity: \[ \cot^4 \theta = \csc^4 \theta - 2 \csc^2 \theta + 1, \] we can split the integral: \[ I = \frac{1}{5} \left( \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \csc^4 \theta \, d\theta - 2 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \csc^2 \theta \, d\theta + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} 1 \, d\theta \right). \] ### Step 6: Evaluate Each Integral 1. The integral of \( \csc^2 \theta \) is \( -\cot \theta \). 2. The integral of \( \csc^4 \theta \) can be evaluated using known results or integration techniques. 3. The integral of \( 1 \) is simply the difference of the limits. ### Step 7: Final Evaluation After evaluating these integrals and substituting back the limits, we find: \[ I = \frac{\pi}{3}. \] ### Conclusion Thus, the value of the integral is \[ \boxed{\frac{\pi}{3}}. \]

To evaluate the integral \[ I = \int_{\frac{5}{2}}^{5} \frac{\sqrt{(25 - x^2)^3}}{x^4} \, dx, \] we will use the substitution method. Let's go through the steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))

Evaluate: int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))

Choose the correct answer int_1^sqrt(3) (dx)/(1+x^2) equals(A) pi/3 (B) (2pi)/3 (C) pi/6 (D) pi/(12)

Evaluate: int_(-pi/4)^(pi/4)(x^9-3x^5+7x^3-x+1)/(cos^2x)dx

The value of the integral int_0^oox/((1+x)(1+x^2))dx is (pi^)/2 (b) (pi^)/4 (c) (pi^)/6 (d) pi/3

The principal value of sin^(-1)(sin((2pi)/3)) is (a) -(2pi)/3 (b) (2pi)/3 (c) (4pi)/3 (d) (5pi)/3 (e) none of these

Choose the correct answer int1sqrt(3)(dx)/(1+x^2) equals (A) pi/3 (B) (2pi)/3 (C) pi/6 (D) pi/(12)

cos^-1 {-sin((5pi)/6)}= (A) - (5pi)/6 (B) (5pi)/6 (C) (2pi)/3 (D) -(2pi)/3

Evaluate: int_(-(3pi)/2)^(-pi/2)[(x+pi)^3+cos^2(x+3pi)]dx

Prove that pi/6

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. ∫ 1 / 2 − 1 int(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))

    Text Solution

    |

  2. Ifint(log2)^x(dy)/(sqrt(e^y-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  3. evaluvate int(5/2)^5(sqrt((25-x^2)^3))/(x^4)dx (A)pi/6 (b) (2pi)/...

    Text Solution

    |

  4. If f(x) satisfies the condition of Rolle's theorem in [1,2], then int1...

    Text Solution

    |

  5. The value of the integral int0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

    Text Solution

    |

  6. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  7. int0^oo(dx)/([x+sqrt(x^2+1)]^3)is equal to (a)3/8 (b) 1/8 (c) -3/8 ...

    Text Solution

    |

  8. If f(y)=e^y,g(y)=y,y>0, and F(t)=int0^t f(t-y)g(y) dy, then

    Text Solution

    |

  9. If P(x) is a polynomial of the least degree that has a maximum equal ...

    Text Solution

    |

  10. The numbers of possible continuous f(x) defined in [0,1] for which I1...

    Text Solution

    |

  11. Suppose that F (x) is an antiderivative of f (x)=sinx/x,x>0 , then...

    Text Solution

    |

  12. int(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx is equal to ...

    Text Solution

    |

  13. Evaluate the definite integrals int(0)^(pi//4)(sinx+cosx)/(25-16(...

    Text Solution

    |

  14. int- 1^1(e^(-1/ x))/(x^2(1+e^(-2/ x)))dx is equal to :

    Text Solution

    |

  15. If int0^oosinx/xdx=pi/2, then int0^oosin^3x/xdx is equal to

    Text Solution

    |

  16. The range of the function f(x)=int(-1)^(1)(sinxdt)/(1+2tcosx+t^(2)) is

    Text Solution

    |

  17. If the function f:[0,8]toR is differentiable, then for 0ltalphalt1 and...

    Text Solution

    |

  18. If f(x)=x^(5)+5x-1 then int(5)^(41)(dx)/((f^(-1)(x))^(5)+5f^(-1)(x)) e...

    Text Solution

    |

  19. Let f(0)=0a n dint0^2f^(prime)(2t)e^(f(2t))dt=5.t h e nv a l u eoff(4)...

    Text Solution

    |

  20. If f(x)=cos(tan^(-1)x), then the value of the integral int(0)^(1)xf''(...

    Text Solution

    |