Home
Class 12
MATHS
The value of the integral int0^(log5)(e^...

The value of the integral `int_0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx`

A

`3+2pi`

B

`4-pi`

C

`2+pi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\log 5} \frac{e^x \sqrt{e^x - 1}}{e^x + 3} \, dx, \] we will use a substitution method. Let's follow the steps: ### Step 1: Substitution Let \( e^x - 1 = t^2 \). Then, we have: \[ e^x = t^2 + 1. \] Differentiating both sides, we get: \[ \frac{d}{dx}(e^x) \, dx = 2t \, dt \implies e^x \, dx = 2t \, dt. \] ### Step 2: Change of Limits When \( x = 0 \): \[ e^0 - 1 = 0 \implies t^2 = 0 \implies t = 0. \] When \( x = \log 5 \): \[ e^{\log 5} - 1 = 5 - 1 = 4 \implies t^2 = 4 \implies t = 2. \] ### Step 3: Rewrite the Integral Now substituting into the integral, we have: \[ I = \int_0^2 \frac{2t \cdot t}{(t^2 + 1) + 3} \, dt = \int_0^2 \frac{2t^2}{t^2 + 4} \, dt. \] ### Step 4: Simplifying the Integral We can rewrite the integral as: \[ I = 2 \int_0^2 \frac{t^2}{t^2 + 4} \, dt. \] Now, we can simplify this further by adding and subtracting 4 in the denominator: \[ I = 2 \int_0^2 \left(1 - \frac{4}{t^2 + 4}\right) dt. \] ### Step 5: Break Down the Integral This gives us: \[ I = 2 \left( \int_0^2 1 \, dt - \int_0^2 \frac{4}{t^2 + 4} \, dt \right). \] ### Step 6: Evaluate the First Integral The first integral is straightforward: \[ \int_0^2 1 \, dt = [t]_0^2 = 2 - 0 = 2. \] ### Step 7: Evaluate the Second Integral For the second integral, we can use the formula for the integral of \( \frac{1}{a^2 + x^2} \): \[ \int \frac{4}{t^2 + 4} \, dt = 2 \tan^{-1} \left( \frac{t}{2} \right). \] Thus, \[ \int_0^2 \frac{4}{t^2 + 4} \, dt = 2 \left[ \tan^{-1} \left( \frac{t}{2} \right) \right]_0^2 = 2 \left( \tan^{-1}(1) - \tan^{-1}(0) \right) = 2 \left( \frac{\pi}{4} - 0 \right) = \frac{\pi}{2}. \] ### Step 8: Combine Results Now substituting back into our expression for \( I \): \[ I = 2 \left( 2 - \frac{\pi}{2} \right) = 4 - \pi. \] ### Final Answer Thus, the value of the integral is: \[ \boxed{4 - \pi}. \]

To solve the integral \[ I = \int_0^{\log 5} \frac{e^x \sqrt{e^x - 1}}{e^x + 3} \, dx, \] we will use a substitution method. Let's follow the steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of the integral int_(1//e)^(e) |logx|dx , is

The value of the integral int_(0)^(pi) (1)/(e^(cosx)+1)dx , is

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

The value of integral int_(1)^(e) (log x)^(3)dx , is

The value of the integral int_-a^a (x e^(x^2))/(1+x^2)dx is (A) e^(a^2) (B) 0 (C) e^(-a^2) (D) a

Find the value of integral A=int_(-a)^(a)(e^(x))/(1+ e^x)dx

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

The value of the integral int_(0)^(1) e^(x^(2))dx lies in the integral

The value of the integral underset(e^(-1))overset(e^(2))int |(log_(e)x)/(x)|dx is

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. evaluvate int(5/2)^5(sqrt((25-x^2)^3))/(x^4)dx (A)pi/6 (b) (2pi)/...

    Text Solution

    |

  2. If f(x) satisfies the condition of Rolle's theorem in [1,2], then int1...

    Text Solution

    |

  3. The value of the integral int0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

    Text Solution

    |

  4. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  5. int0^oo(dx)/([x+sqrt(x^2+1)]^3)is equal to (a)3/8 (b) 1/8 (c) -3/8 ...

    Text Solution

    |

  6. If f(y)=e^y,g(y)=y,y>0, and F(t)=int0^t f(t-y)g(y) dy, then

    Text Solution

    |

  7. If P(x) is a polynomial of the least degree that has a maximum equal ...

    Text Solution

    |

  8. The numbers of possible continuous f(x) defined in [0,1] for which I1...

    Text Solution

    |

  9. Suppose that F (x) is an antiderivative of f (x)=sinx/x,x>0 , then...

    Text Solution

    |

  10. int(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx is equal to ...

    Text Solution

    |

  11. Evaluate the definite integrals int(0)^(pi//4)(sinx+cosx)/(25-16(...

    Text Solution

    |

  12. int- 1^1(e^(-1/ x))/(x^2(1+e^(-2/ x)))dx is equal to :

    Text Solution

    |

  13. If int0^oosinx/xdx=pi/2, then int0^oosin^3x/xdx is equal to

    Text Solution

    |

  14. The range of the function f(x)=int(-1)^(1)(sinxdt)/(1+2tcosx+t^(2)) is

    Text Solution

    |

  15. If the function f:[0,8]toR is differentiable, then for 0ltalphalt1 and...

    Text Solution

    |

  16. If f(x)=x^(5)+5x-1 then int(5)^(41)(dx)/((f^(-1)(x))^(5)+5f^(-1)(x)) e...

    Text Solution

    |

  17. Let f(0)=0a n dint0^2f^(prime)(2t)e^(f(2t))dt=5.t h e nv a l u eoff(4)...

    Text Solution

    |

  18. If f(x)=cos(tan^(-1)x), then the value of the integral int(0)^(1)xf''(...

    Text Solution

    |

  19. The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)...

    Text Solution

    |

  20. The value of int1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s tane (b) tan^...

    Text Solution

    |