Home
Class 12
MATHS
If f(y)=e^y,g(y)=y,y>0, and F(t)=int0^t...

If `f(y)=e^y,g(y)=y,y>0, and F(t)=int_0^t f(t-y)g(y) dy`, then

A

`F(t)=e^(t)-(1+t)`

B

`F(t)=te^(t)`

C

`F(t)=te^(-t)`

D

`F(t)=1-e^(t)(1+t)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the function \( F(t) \) defined as: \[ F(t) = \int_0^t f(t-y) g(y) \, dy \] Given that \( f(y) = e^y \) and \( g(y) = y \), we can substitute these into the integral: \[ F(t) = \int_0^t f(t-y) g(y) \, dy = \int_0^t f(t-y) \cdot y \, dy \] Now substituting \( f(t-y) = e^{t-y} \): \[ F(t) = \int_0^t e^{t-y} \cdot y \, dy \] Next, we can factor out \( e^t \) since it is a constant with respect to \( y \): \[ F(t) = e^t \int_0^t e^{-y} \cdot y \, dy \] Now we need to evaluate the integral \( \int_0^t y e^{-y} \, dy \). We will use integration by parts for this integral. Let: - \( u = y \) (thus \( du = dy \)) - \( dv = e^{-y} dy \) (thus \( v = -e^{-y} \)) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int_0^t y e^{-y} \, dy = \left[ -y e^{-y} \right]_0^t + \int_0^t e^{-y} \, dy \] Calculating the first term: \[ \left[ -y e^{-y} \right]_0^t = -t e^{-t} - (0) = -t e^{-t} \] Now we compute the second integral: \[ \int_0^t e^{-y} \, dy = \left[ -e^{-y} \right]_0^t = -e^{-t} + 1 = 1 - e^{-t} \] Putting it all together: \[ \int_0^t y e^{-y} \, dy = -t e^{-t} + (1 - e^{-t}) = 1 - (t + 1)e^{-t} \] Now substituting this back into our expression for \( F(t) \): \[ F(t) = e^t \left( 1 - (t + 1)e^{-t} \right) = e^t - (t + 1) \] Thus, we simplify: \[ F(t) = e^t - t - 1 \] So the final answer is: \[ F(t) = e^t - t - 1 \]

To solve the problem, we need to compute the function \( F(t) \) defined as: \[ F(t) = \int_0^t f(t-y) g(y) \, dy \] Given that \( f(y) = e^y \) and \( g(y) = y \), we can substitute these into the integral: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If f(y)=e^y ,g(y) = y>0,a n d \ F(t)=int_0^t f(t-y)g(y)dy ,then

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then

If f(x-y)=f(x).g(y)-f(y).g(x) and g(x-y)=g(x).g(y)+f(x).f(y) for all x in R . If right handed derivative at x=0 exists for f(x) find the derivative of g(x) at x =0

If f(x-y)=f(x).g(y)-f(y).g(x) and g(x-y)=g(x).g(y)+f(x).f(y) for all x in R . If right handed derivative at x=0 exists for f(x) find the derivative of g(x) at x =0

Let f :R ^(+) to R be a differentiable function with f (1)=3 and satisfying : int _(1) ^(xy) f(t) dt =y int_(1) ^(x) f (t) dt +x int_(1) ^(y) f (t) dt AA x, y in R^(+), then f (e) =

If f(x) =x + int_(0)^(1) (xy^(2)+x^(2)y)(f(y)) dy, "find" f(x) if x and y are independent.

If y(t) is a solution of (1+t)(dy)/(dt)-t y=1a n dy(0)=-1 then show that y(1)=-1/2dot

If y(t) is a solution of (1+t)(dy)/(dt)-t y=1a n dy(0)=-1 then show that y(1)=-1/2dot

If f:R rarr (0,oo) be a differentiable function f(x) satisfying f(x+y)-f(x-y)=f(x)*{f(y)-f(y)-y}, AA x, y in R, (f(y)!= f(-y) " for all " y in R) and f'(0)=2010 . Now, answer the following questions. let g(x)=log_(e)(sin x) , and int f(g(x))cos x dx=h(x)+c , (where c is constant of integration), then h(pi/2) is equal to

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  2. int0^oo(dx)/([x+sqrt(x^2+1)]^3)is equal to (a)3/8 (b) 1/8 (c) -3/8 ...

    Text Solution

    |

  3. If f(y)=e^y,g(y)=y,y>0, and F(t)=int0^t f(t-y)g(y) dy, then

    Text Solution

    |

  4. If P(x) is a polynomial of the least degree that has a maximum equal ...

    Text Solution

    |

  5. The numbers of possible continuous f(x) defined in [0,1] for which I1...

    Text Solution

    |

  6. Suppose that F (x) is an antiderivative of f (x)=sinx/x,x>0 , then...

    Text Solution

    |

  7. int(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx is equal to ...

    Text Solution

    |

  8. Evaluate the definite integrals int(0)^(pi//4)(sinx+cosx)/(25-16(...

    Text Solution

    |

  9. int- 1^1(e^(-1/ x))/(x^2(1+e^(-2/ x)))dx is equal to :

    Text Solution

    |

  10. If int0^oosinx/xdx=pi/2, then int0^oosin^3x/xdx is equal to

    Text Solution

    |

  11. The range of the function f(x)=int(-1)^(1)(sinxdt)/(1+2tcosx+t^(2)) is

    Text Solution

    |

  12. If the function f:[0,8]toR is differentiable, then for 0ltalphalt1 and...

    Text Solution

    |

  13. If f(x)=x^(5)+5x-1 then int(5)^(41)(dx)/((f^(-1)(x))^(5)+5f^(-1)(x)) e...

    Text Solution

    |

  14. Let f(0)=0a n dint0^2f^(prime)(2t)e^(f(2t))dt=5.t h e nv a l u eoff(4)...

    Text Solution

    |

  15. If f(x)=cos(tan^(-1)x), then the value of the integral int(0)^(1)xf''(...

    Text Solution

    |

  16. The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)...

    Text Solution

    |

  17. The value of int1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s tane (b) tan^...

    Text Solution

    |

  18. If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))sin x dx=5, then f(0) is equal ...

    Text Solution

    |

  19. If int1^2e^(x^2)dx=a ,t h e ninte^(e^4)sqrt(1n x)dx is equal to (a)2e...

    Text Solution

    |

  20. If f(x) is continuous for all real values of x , then sum(r=1)^nint0^...

    Text Solution

    |