Home
Class 12
MATHS
Suppose that F (x) is an antiderivative ...

Suppose that F (x) is an antiderivative of `f (x)=sinx/x,x>0` , then `int_1^3 (sin2x)/x dx` can be expressed as

A

`F(6)-F(2)`

B

`1/2(F(6)-F(2))`

C

`1/2(F(3)-F(1))`

D

`2(F(6)-F(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ I = \int_1^3 \frac{\sin(2x)}{x} \, dx \] and express it in terms of the antiderivative \( F(x) \) of \( f(x) = \frac{\sin x}{x} \). ### Step 1: Use Substitution Let's use the substitution \( t = 2x \). Then, we differentiate to find \( dx \): \[ dt = 2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{2} \] ### Step 2: Change the Limits of Integration When \( x = 1 \): \[ t = 2 \cdot 1 = 2 \] When \( x = 3 \): \[ t = 2 \cdot 3 = 6 \] ### Step 3: Substitute in the Integral Now we can rewrite the integral \( I \): \[ I = \int_1^3 \frac{\sin(2x)}{x} \, dx = \int_2^6 \frac{\sin(t)}{t/2} \cdot \frac{dt}{2} \] This simplifies to: \[ I = \int_2^6 \frac{\sin(t)}{t} \, dt \] ### Step 4: Express in Terms of Antiderivative Since \( F(x) \) is the antiderivative of \( f(x) = \frac{\sin x}{x} \), we can express the integral as: \[ I = F(6) - F(2) \] ### Final Result Thus, the integral \( \int_1^3 \frac{\sin(2x)}{x} \, dx \) can be expressed as: \[ I = F(6) - F(2) \]

To solve the problem, we need to evaluate the integral \[ I = \int_1^3 \frac{\sin(2x)}{x} \, dx \] and express it in terms of the antiderivative \( F(x) \) of \( f(x) = \frac{\sin x}{x} \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int e^x {f(x)-f'(x)}dx= phi(x) , then int e^x f(x) dx is

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

If f:RrarrR defined by f(x)=sinx+x , then find the value of int_0^pi(f^-1(x))dx

Let d/(dx) (F(x))= e^(sinx)/x, x>0 . If int_1^4 2e^sin(x^2)/x dx = F(k)-F(1) , then possible value of k is:

If f(x)=1-x+x^(2)-x^(3)+x^(4)+….oo then int_(0)^(x)f(x)dx=

Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int_1^4 3/x e^sin (x^3)dx=F(k)-F(1), then one of the possible values of k , is: (a) 15 (b) 16 (c) 63 (d) 64

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

If f(x)=x+sinx , then find (2)/(pi^(2)).int_(pi)^(2pi)(f^(-1)(x)+sinx)dx .

Prove that int_(0)^(oo) (sin^(2)x)/(x^(2))dx=int_(0)^(oo) (sinx)x dx

If f(x) = int(2sinx-sin2x)/(x^(3)) dx, where xne0 , then Limit_(xto0) f^(')(x) has the value

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. If P(x) is a polynomial of the least degree that has a maximum equal ...

    Text Solution

    |

  2. The numbers of possible continuous f(x) defined in [0,1] for which I1...

    Text Solution

    |

  3. Suppose that F (x) is an antiderivative of f (x)=sinx/x,x>0 , then...

    Text Solution

    |

  4. int(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx is equal to ...

    Text Solution

    |

  5. Evaluate the definite integrals int(0)^(pi//4)(sinx+cosx)/(25-16(...

    Text Solution

    |

  6. int- 1^1(e^(-1/ x))/(x^2(1+e^(-2/ x)))dx is equal to :

    Text Solution

    |

  7. If int0^oosinx/xdx=pi/2, then int0^oosin^3x/xdx is equal to

    Text Solution

    |

  8. The range of the function f(x)=int(-1)^(1)(sinxdt)/(1+2tcosx+t^(2)) is

    Text Solution

    |

  9. If the function f:[0,8]toR is differentiable, then for 0ltalphalt1 and...

    Text Solution

    |

  10. If f(x)=x^(5)+5x-1 then int(5)^(41)(dx)/((f^(-1)(x))^(5)+5f^(-1)(x)) e...

    Text Solution

    |

  11. Let f(0)=0a n dint0^2f^(prime)(2t)e^(f(2t))dt=5.t h e nv a l u eoff(4)...

    Text Solution

    |

  12. If f(x)=cos(tan^(-1)x), then the value of the integral int(0)^(1)xf''(...

    Text Solution

    |

  13. The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)...

    Text Solution

    |

  14. The value of int1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s tane (b) tan^...

    Text Solution

    |

  15. If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))sin x dx=5, then f(0) is equal ...

    Text Solution

    |

  16. If int1^2e^(x^2)dx=a ,t h e ninte^(e^4)sqrt(1n x)dx is equal to (a)2e...

    Text Solution

    |

  17. If f(x) is continuous for all real values of x , then sum(r=1)^nint0^...

    Text Solution

    |

  18. The value of int0^(2) (3x ^ 2 −1)dx

    Text Solution

    |

  19. f(x) is a continuous function for all real values of x and satisfies i...

    Text Solution

    |

  20. If f(x)=int(-1)^(x)|t|dt, then for any xge0,f(x) equals

    Text Solution

    |