Home
Class 12
MATHS
Evaluate the definite integrals int...

Evaluate the definite integrals `int_(0)^(pi//4)(sinx+cosx)/(25-16(sinx-cosx)^(2)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the definite integral \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{25 - 16(\sin x - \cos x)^2} \, dx, \] we will perform a substitution and simplify the integral step by step. ### Step 1: Substitution Let \( t = \sin x - \cos x \). Then, we differentiate to find \( dt \): \[ dt = (\cos x + \sin x) \, dx. \] Thus, we have: \[ dx = \frac{dt}{\cos x + \sin x}. \] ### Step 2: Change the limits of integration Next, we need to change the limits of integration according to our substitution: - When \( x = 0 \): \[ t = \sin(0) - \cos(0) = 0 - 1 = -1. \] - When \( x = \frac{\pi}{4} \): \[ t = \sin\left(\frac{\pi}{4}\right) - \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} = 0. \] Thus, the new limits for \( t \) will be from \( -1 \) to \( 0 \). ### Step 3: Rewrite the integral Now, we can rewrite the integral in terms of \( t \): \[ I = \int_{-1}^{0} \frac{\sin x + \cos x}{25 - 16t^2} \cdot \frac{dt}{\sin x + \cos x}. \] The \( \sin x + \cos x \) terms cancel out: \[ I = \int_{-1}^{0} \frac{1}{25 - 16t^2} \, dt. \] ### Step 4: Simplify the integral We can rewrite the denominator: \[ 25 - 16t^2 = 5^2 - (4t)^2. \] Now we can use the formula for the integral of the form \( \int \frac{1}{a^2 - x^2} \, dx \): \[ \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C. \] Here, \( a = 5 \) and \( x = 4t \). ### Step 5: Apply the formula Thus, \[ I = \frac{1}{2 \cdot 5} \int_{-1}^{0} \frac{1}{5^2 - (4t)^2} \, dt = \frac{1}{10} \int_{-1}^{0} \frac{1}{25 - 16t^2} \, dt. \] Using the formula: \[ = \frac{1}{10} \cdot \frac{1}{10} \left[ \ln \left| \frac{5 + 4t}{5 - 4t} \right| \right]_{-1}^{0}. \] ### Step 6: Evaluate the limits Now we evaluate the limits: - For \( t = 0 \): \[ \frac{5 + 4(0)}{5 - 4(0)} = \frac{5}{5} = 1 \implies \ln(1) = 0. \] - For \( t = -1 \): \[ \frac{5 + 4(-1)}{5 - 4(-1)} = \frac{5 - 4}{5 + 4} = \frac{1}{9} \implies \ln\left(\frac{1}{9}\right) = -\ln(9). \] Thus, \[ I = \frac{1}{100} \left[ 0 - (-\ln(9)) \right] = \frac{\ln(9)}{100}. \] ### Step 7: Final simplification Using properties of logarithms: \[ \ln(9) = \ln(3^2) = 2\ln(3). \] Thus, \[ I = \frac{2\ln(3)}{100} = \frac{\ln(3)}{50}. \] ### Final Answer The value of the definite integral is: \[ \boxed{\frac{\ln(3)}{50}}. \]

To evaluate the definite integral \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{25 - 16(\sin x - \cos x)^2} \, dx, \] we will perform a substitution and simplify the integral step by step. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate the definite integrals int_0^(pi/4)(sinx+cosx)/(9+16sin2x)dx

Evaluate the definite integrals int_(pi/6)^(pi/3)(sinx+cosx)/(sqrt(sin2x))dx

int_(0)^(pi//2)(sinx-cosx)log(sinx+cosx)dx=0

Evaluate the definite integrals int_(pi/2)^pie^x((1-sinx)/(1-cosx))dx

Evaluate the following integral: int_0^(pi//2)(x+sinx)/(1+cosx)dx

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

Evaluate int_(0)^(pi//2)(sinx-cosx)/(1+sinx*cosx)dx

Evaluate the following integrals: (1-35) int_0^(pi//2)(asinx+bcosx)/(sinx+cosx)dx

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

Evaluate: int_0^(pi/4)(sinx+cosx)/(9+16sin2x)dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. Suppose that F (x) is an antiderivative of f (x)=sinx/x,x>0 , then...

    Text Solution

    |

  2. int(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx is equal to ...

    Text Solution

    |

  3. Evaluate the definite integrals int(0)^(pi//4)(sinx+cosx)/(25-16(...

    Text Solution

    |

  4. int- 1^1(e^(-1/ x))/(x^2(1+e^(-2/ x)))dx is equal to :

    Text Solution

    |

  5. If int0^oosinx/xdx=pi/2, then int0^oosin^3x/xdx is equal to

    Text Solution

    |

  6. The range of the function f(x)=int(-1)^(1)(sinxdt)/(1+2tcosx+t^(2)) is

    Text Solution

    |

  7. If the function f:[0,8]toR is differentiable, then for 0ltalphalt1 and...

    Text Solution

    |

  8. If f(x)=x^(5)+5x-1 then int(5)^(41)(dx)/((f^(-1)(x))^(5)+5f^(-1)(x)) e...

    Text Solution

    |

  9. Let f(0)=0a n dint0^2f^(prime)(2t)e^(f(2t))dt=5.t h e nv a l u eoff(4)...

    Text Solution

    |

  10. If f(x)=cos(tan^(-1)x), then the value of the integral int(0)^(1)xf''(...

    Text Solution

    |

  11. The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)...

    Text Solution

    |

  12. The value of int1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s tane (b) tan^...

    Text Solution

    |

  13. If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))sin x dx=5, then f(0) is equal ...

    Text Solution

    |

  14. If int1^2e^(x^2)dx=a ,t h e ninte^(e^4)sqrt(1n x)dx is equal to (a)2e...

    Text Solution

    |

  15. If f(x) is continuous for all real values of x , then sum(r=1)^nint0^...

    Text Solution

    |

  16. The value of int0^(2) (3x ^ 2 −1)dx

    Text Solution

    |

  17. f(x) is a continuous function for all real values of x and satisfies i...

    Text Solution

    |

  18. If f(x)=int(-1)^(x)|t|dt, then for any xge0,f(x) equals

    Text Solution

    |

  19. If agt0 and A=int(0)^(a)cos^(-1)xdx, and int(-a)^(a)(cos^(-1)x-sin^(...

    Text Solution

    |

  20. The value of int1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,w h e r ea >1,a n ...

    Text Solution

    |