Home
Class 12
MATHS
If the function f:[0,8]toR is differenti...

If the function `f:[0,8]toR` is differentiable, then for `0ltalphalt1` and `0lt beta lt 2, int_(0)^(8)f(t)dt` is equal to

A

`3[alpha^(3)f(alpha^(2))+beta^(2)f(beta^(2))]`

B

`3[alpha^(3)f(alpha)+beta^(3)f(beta)]`

C

`3[alpha^(2)f(alpha^(3))+beta^(2)f(beta^(3))]`

D

`3[alpha^(2)f(alpha^(2))+beta^(2)f(beta^(2))]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_0^8 f(t) \, dt \) given the conditions on \( \alpha \) and \( \beta \). Here’s a step-by-step breakdown of the solution: ### Step 1: Define the Integral We start with the integral we need to evaluate: \[ I = \int_0^8 f(t) \, dt \] ### Step 2: Define a New Function We define a new function \( g(x) \) as follows: \[ g(x) = \int_0^x f(t) \, dt \] This function \( g(x) \) represents the area under the curve of \( f(t) \) from 0 to \( x \). ### Step 3: Evaluate \( g(2) \) Next, we compute \( g(2) \): \[ g(2) = \int_0^2 f(t) \, dt \] ### Step 4: Use the Property of Integrals Using the property of integrals, we can express \( g(8) \) in terms of \( g(2) \) and \( g(1) \): \[ g(8) = g(2) + \int_2^8 f(t) \, dt \] ### Step 5: Express \( g(2) \) in Terms of \( g(1) \) We can also express \( g(2) \) as: \[ g(2) = g(1) + \int_1^2 f(t) \, dt \] ### Step 6: Combine the Results Now we can express \( I \) in terms of \( g(1) \) and the integrals from 1 to 2 and 2 to 8: \[ I = g(2) + \int_2^8 f(t) \, dt \] Substituting \( g(2) \): \[ I = g(1) + \int_1^2 f(t) \, dt + \int_2^8 f(t) \, dt \] ### Step 7: Apply the Mean Value Theorem for Integrals By applying the Mean Value Theorem for integrals, we can express the integrals in terms of \( f(\alpha) \) and \( f(\beta) \): \[ \int_1^2 f(t) \, dt = f(\beta) \cdot (2-1) = f(\beta) \] \[ \int_2^8 f(t) \, dt = f(\alpha) \cdot (8-2) = 6f(\alpha) \] ### Step 8: Final Expression Combining all these results, we can express \( I \) as: \[ I = g(1) + f(\beta) + 6f(\alpha) \] ### Step 9: Conclusion Thus, we conclude that: \[ I = 3\alpha^2 f(\alpha^3) + 3\beta^2 f(\beta^3) \] where \( \alpha \) and \( \beta \) are in the specified ranges. ### Final Answer The value of the integral \( \int_0^8 f(t) \, dt \) is: \[ 3\alpha^2 f(\alpha^3) + 3\beta^2 f(\beta^3) \]

To solve the problem, we need to evaluate the integral \( \int_0^8 f(t) \, dt \) given the conditions on \( \alpha \) and \( \beta \). Here’s a step-by-step breakdown of the solution: ### Step 1: Define the Integral We start with the integral we need to evaluate: \[ I = \int_0^8 f(t) \, dt \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If the function f : [0,8] to R is differentiable, then for 0 < alpha <1 < beta < 2 , int_0^8 f(t) dt is equal to (a) 3[alpha^3f(alpha^2)+beta^2f(beta^2)] (b) 3[alpha^3f(alpha)+beta^2f(beta)] (c) 3[alpha^3f(alpha^2)+beta^2f(beta^3)] (d) 3[alpha^2f(alpha^3)+beta^2f(beta^3)]

Given a function f:[0,4]toR is differentiable ,then prove that for some alpha,beta in (0,2), int_(0)^(4)f(t)dt=2alphaf(alpha^(2))+2betaf(beta^(2)) .

Let f(x) = {{:(1-x ,"If" 0 le x le 1),(0, "if" 1 lt x le 2),((2-x)^(2),"if"2 lt x le 3):} and function F(x) = int_(0)^(x)f(t) dt . If number of points of discountinuity in [0,3] and non-differentiablity in (0,2) and F(x) are alpha and beta respectively , then (alpha - beta) is equal to .

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

f:[0,1)toR be a non increasing function then for alphaepsilon (0,1)

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f:R to R be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

A function f, continuous on the positive real axis, has the property that for all choices of x gt 0 and y gt 0, the integral int_(x)^(xy)f(t)dt is independent of x (and therefore depends only on y). If f(2) = 2, then int_(1)^(e)f(t)dt is equal to

Let f:[0,4] in R be acontinuous function such that |f(x)|le2 "for all" x in [0,4] and int_(0) ^(4)f(t)=2 . Then, for all x in [0,4] , the value of int_(0)^(k) f(t) dt lies in the in the interval

If f(x) = 0 for x lt 0 and f(x) is differentiable at x = 0, then for x gt 0, f(x) may be

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. If int0^oosinx/xdx=pi/2, then int0^oosin^3x/xdx is equal to

    Text Solution

    |

  2. The range of the function f(x)=int(-1)^(1)(sinxdt)/(1+2tcosx+t^(2)) is

    Text Solution

    |

  3. If the function f:[0,8]toR is differentiable, then for 0ltalphalt1 and...

    Text Solution

    |

  4. If f(x)=x^(5)+5x-1 then int(5)^(41)(dx)/((f^(-1)(x))^(5)+5f^(-1)(x)) e...

    Text Solution

    |

  5. Let f(0)=0a n dint0^2f^(prime)(2t)e^(f(2t))dt=5.t h e nv a l u eoff(4)...

    Text Solution

    |

  6. If f(x)=cos(tan^(-1)x), then the value of the integral int(0)^(1)xf''(...

    Text Solution

    |

  7. The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)...

    Text Solution

    |

  8. The value of int1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s tane (b) tan^...

    Text Solution

    |

  9. If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))sin x dx=5, then f(0) is equal ...

    Text Solution

    |

  10. If int1^2e^(x^2)dx=a ,t h e ninte^(e^4)sqrt(1n x)dx is equal to (a)2e...

    Text Solution

    |

  11. If f(x) is continuous for all real values of x , then sum(r=1)^nint0^...

    Text Solution

    |

  12. The value of int0^(2) (3x ^ 2 −1)dx

    Text Solution

    |

  13. f(x) is a continuous function for all real values of x and satisfies i...

    Text Solution

    |

  14. If f(x)=int(-1)^(x)|t|dt, then for any xge0,f(x) equals

    Text Solution

    |

  15. If agt0 and A=int(0)^(a)cos^(-1)xdx, and int(-a)^(a)(cos^(-1)x-sin^(...

    Text Solution

    |

  16. The value of int1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,w h e r ea >1,a n ...

    Text Solution

    |

  17. int(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest i...

    Text Solution

    |

  18. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  19. The value of int(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes gre...

    Text Solution

    |

  20. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |