Home
Class 12
MATHS
Let f(0)=0a n dint0^2f^(prime)(2t)e^(f(2...

Let `f(0)=0a n dint_0^2f^(prime)(2t)e^(f(2t))dt=5.t h e nv a l u eoff(4)i s` log 2 (b) log 7 (c) log 11 (d) log 13

A

`log 2`

B

`log 7`

C

`log 11`

D

`log 13`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the method outlined in the video transcript. ### Step-by-Step Solution: 1. **Given Information**: We have the following information: - \( f(0) = 0 \) - \( \int_0^2 f'(2t) e^{f(2t)} dt = 5 \) 2. **Substitution**: We will use the substitution method. Let: \[ y = e^{f(2t)} \] Then, differentiating both sides gives: \[ dy = f'(2t) e^{f(2t)} \cdot 2 dt \quad \Rightarrow \quad dt = \frac{dy}{2 f'(2t) e^{f(2t)}} \] 3. **Changing Limits**: When \( t = 0 \): \[ y = e^{f(0)} = e^0 = 1 \] When \( t = 2 \): \[ y = e^{f(4)} \] 4. **Rewriting the Integral**: The integral can be rewritten as: \[ \int_1^{e^{f(4)}} \frac{1}{2} dy = 5 \] This simplifies to: \[ \frac{1}{2} \left( e^{f(4)} - 1 \right) = 5 \] 5. **Solving for \( e^{f(4)} \)**: Multiplying both sides by 2 gives: \[ e^{f(4)} - 1 = 10 \] Therefore: \[ e^{f(4)} = 11 \] 6. **Finding \( f(4) \)**: Taking the natural logarithm on both sides: \[ f(4) = \log(11) \] ### Conclusion: The value of \( f(4) \) is \( \log(11) \). ### Final Answer: The correct option is (c) \( \log 11 \).

To solve the problem step by step, we will follow the method outlined in the video transcript. ### Step-by-Step Solution: 1. **Given Information**: We have the following information: - \( f(0) = 0 \) - \( \int_0^2 f'(2t) e^{f(2t)} dt = 5 \) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

If ninth term in the expansion of (3^(log)_3(9^((x-1)+7))+1/(3^ -1/8(log)_3(3^((x-1)+1))))^(11)"i s"660 ,"t h e nv a l u eo f"x"i s" 4 (b) 1 or 2 (c) 0 or 1 (d) 3

f(x)=int_1^x(tan^(-1)(t))/t dtAAx in R^+,t h e nfin dt h ev a l u eof f(e^2)-f(1/(e^2))

Let u=int_0^1("ln"(x+1))/(x^2+1)dx a n d v=int_0^(pi/2)ln(sin2x)dx ,t h e n (a) u=-pi/2ln2 (b) 4u+v=0 (c) u+4v=0 (d) u=pi/8ln2

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to : (a) 0 (b) 2e (c) 2e^2 -2 (d) e^2-e

IfS_n=[1/(1+sqrt(n))+1/(2+sqrt(2n))++1/(n+sqrt(n^2))],t h e n(lim)_(n rarr oo)S_n is equal to (a)log 2 (b) log4 (c)log 8 (d) none of these

Ifint_0^(f(x))t^2dt=xcospix ,t h e nf^(prime)(9)i s -1/9 (b) -1/3 (c) 1/3 (d) non-existent

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

The value of 3^((log)_4 5)-5^((log)_4 3) is 0 (b) 1 (c) 2 (d) none of these

The value of 3^((log)_4 5)-5^((log)_4 3) is 0 (b) 1 (c) 2 (d) none of these

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. If the function f:[0,8]toR is differentiable, then for 0ltalphalt1 and...

    Text Solution

    |

  2. If f(x)=x^(5)+5x-1 then int(5)^(41)(dx)/((f^(-1)(x))^(5)+5f^(-1)(x)) e...

    Text Solution

    |

  3. Let f(0)=0a n dint0^2f^(prime)(2t)e^(f(2t))dt=5.t h e nv a l u eoff(4)...

    Text Solution

    |

  4. If f(x)=cos(tan^(-1)x), then the value of the integral int(0)^(1)xf''(...

    Text Solution

    |

  5. The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)...

    Text Solution

    |

  6. The value of int1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s tane (b) tan^...

    Text Solution

    |

  7. If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))sin x dx=5, then f(0) is equal ...

    Text Solution

    |

  8. If int1^2e^(x^2)dx=a ,t h e ninte^(e^4)sqrt(1n x)dx is equal to (a)2e...

    Text Solution

    |

  9. If f(x) is continuous for all real values of x , then sum(r=1)^nint0^...

    Text Solution

    |

  10. The value of int0^(2) (3x ^ 2 −1)dx

    Text Solution

    |

  11. f(x) is a continuous function for all real values of x and satisfies i...

    Text Solution

    |

  12. If f(x)=int(-1)^(x)|t|dt, then for any xge0,f(x) equals

    Text Solution

    |

  13. If agt0 and A=int(0)^(a)cos^(-1)xdx, and int(-a)^(a)(cos^(-1)x-sin^(...

    Text Solution

    |

  14. The value of int1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,w h e r ea >1,a n ...

    Text Solution

    |

  15. int(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest i...

    Text Solution

    |

  16. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  17. The value of int(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes gre...

    Text Solution

    |

  18. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |

  19. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |

  20. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |