Home
Class 12
MATHS
The equation of the curve is y=f(x)dot T...

The equation of the curve is `y=f(x)dot` The tangents at `[1,f(1),[2,f(2)],a n d[3,f(3)]` make angles `pi/6,pi/3,a n dpi/4,` respectively, with the positive direction of x-axis. Then the value of `int_2^3f^(prime)(x)f^('')dx+int_1^3f^('')dx` is equal to `-1/(sqrt(3))` (b) `1/(sqrt(3))` (e) 0 (d) none of these

A

`-1//sqrt(3)`

B

`1//sqrt(3)`

C

`0`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we will follow the reasoning laid out in the video transcript. ### Step 1: Identify the derivatives from the angles Given the angles made by the tangents at points (1, f(1)), (2, f(2)), and (3, f(3)), we can find the derivatives at these points using the tangent of the angles: 1. \( f'(1) = \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \) 2. \( f'(2) = \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \) 3. \( f'(3) = \tan\left(\frac{\pi}{4}\right) = 1 \) ### Step 2: Set up the integrals We need to evaluate the expression: \[ \int_2^3 f'(x) f''(x) \, dx + \int_1^3 f''(x) \, dx \] ### Step 3: Evaluate the first integral Using integration by parts on the first integral: Let \( u = f'(x) \) and \( dv = f''(x) \, dx \). Then, \( du = f''(x) \, dx \) and \( v = f'(x) \). The integration by parts formula is: \[ \int u \, dv = uv - \int v \, du \] Applying this, we have: \[ \int_2^3 f'(x) f''(x) \, dx = \left[ f'(x)^2 / 2 \right]_2^3 \] Calculating this gives: \[ \frac{f'(3)^2}{2} - \frac{f'(2)^2}{2} = \frac{1^2}{2} - \frac{(\sqrt{3})^2}{2} = \frac{1}{2} - \frac{3}{2} = -1 \] ### Step 4: Evaluate the second integral Now, we evaluate the second integral: \[ \int_1^3 f''(x) \, dx = \left[ f'(x) \right]_1^3 = f'(3) - f'(1) \] Substituting the values we found earlier: \[ f'(3) - f'(1) = 1 - \frac{1}{\sqrt{3}} = 1 - \frac{1}{\sqrt{3}} = \frac{\sqrt{3} - 1}{\sqrt{3}} \] ### Step 5: Combine the results Now we combine the results from both integrals: \[ \int_2^3 f'(x) f''(x) \, dx + \int_1^3 f''(x) \, dx = -1 + \left( \frac{\sqrt{3} - 1}{\sqrt{3}} \right) \] ### Step 6: Simplify the final expression To combine these, we can express \(-1\) as \(-\frac{\sqrt{3}}{\sqrt{3}}\): \[ -\frac{\sqrt{3}}{\sqrt{3}} + \frac{\sqrt{3} - 1}{\sqrt{3}} = \frac{-\sqrt{3} + \sqrt{3} - 1}{\sqrt{3}} = \frac{-1}{\sqrt{3}} \] ### Final Answer Thus, the final value of the expression is: \[ -\frac{1}{\sqrt{3}} \]

To solve the problem step-by-step, we will follow the reasoning laid out in the video transcript. ### Step 1: Identify the derivatives from the angles Given the angles made by the tangents at points (1, f(1)), (2, f(2)), and (3, f(3)), we can find the derivatives at these points using the tangent of the angles: 1. \( f'(1) = \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \) 2. \( f'(2) = \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \) 3. \( f'(3) = \tan\left(\frac{\pi}{4}\right) = 1 \) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)],a n d[3,f(3)] make angles pi/6,pi/3,a n dpi/4, respectively, with the positive direction of x-axis. Then the value of int_2^3f^(prime)(x)f^(x)dx+int_1^3f^(x)dx is equal to (a) -1/(sqrt(3)) (b) 1/(sqrt(3)) (c) 0 (d) none of these

If f(0)=0, f(3)=3 and f'(3)=4 , then the value of int_(0)^(1)xf'' (3x)dx is equal to

Let y=f(x)=4x^(3)+2x-6 , then the value of int_(0)^(2)f(x)dx+int_(0)^(30)f^(-1)(y)dy is equal to _________.

L e tf(x)=x^3-(3x^2)/2+x+1/4 Then the value of (int_(1/4)^(3/4)f(f(x))dx)^(-1) is____

Let f: R->R be given by f(x)=x^2-3 . Then, f^(-1) is given by (a)sqrt(x+3) (b) sqrt(x)+3 (c) x+sqrt(3) (d) none of these

f(x) is a continuous function for all real values of x and satisfies int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot Then int_(-3)^5f(|x|)dx is equal to (19)/2 (b) (35)/2 (c) (17)/2 (d) none of these

f(x) is a continuous function for all real values of x and satisfies int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot Then int_(-3)^5f(|x|)dx is equal to (a) (19)/2 (b) (35)/2 (c) (17)/2 (d) none of these

f(x) is a continuous function for all real values of x and satisfies int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot Then int_(-3)^5f(|x|)dx is equal to (19)/2 (b) (35)/2 (c) (17)/2 (d) none of these

If f(x) satisfies the condition of Rolle's theorem in [1,2] , then int_1^2 f'(x) dx is equal to (a) 1 (b) 3 (c) 0 (d) none of these

If f(x) satisfies the condition of Rolle's theorem in [1,2] , then int_1^2 f'(x) dx is equal to (a) 1 (b) 3 (c) 0 (d) none of these

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. Let f(0)=0a n dint0^2f^(prime)(2t)e^(f(2t))dt=5.t h e nv a l u eoff(4)...

    Text Solution

    |

  2. If f(x)=cos(tan^(-1)x), then the value of the integral int(0)^(1)xf''(...

    Text Solution

    |

  3. The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)...

    Text Solution

    |

  4. The value of int1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s tane (b) tan^...

    Text Solution

    |

  5. If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))sin x dx=5, then f(0) is equal ...

    Text Solution

    |

  6. If int1^2e^(x^2)dx=a ,t h e ninte^(e^4)sqrt(1n x)dx is equal to (a)2e...

    Text Solution

    |

  7. If f(x) is continuous for all real values of x , then sum(r=1)^nint0^...

    Text Solution

    |

  8. The value of int0^(2) (3x ^ 2 −1)dx

    Text Solution

    |

  9. f(x) is a continuous function for all real values of x and satisfies i...

    Text Solution

    |

  10. If f(x)=int(-1)^(x)|t|dt, then for any xge0,f(x) equals

    Text Solution

    |

  11. If agt0 and A=int(0)^(a)cos^(-1)xdx, and int(-a)^(a)(cos^(-1)x-sin^(...

    Text Solution

    |

  12. The value of int1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,w h e r ea >1,a n ...

    Text Solution

    |

  13. int(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest i...

    Text Solution

    |

  14. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  15. The value of int(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes gre...

    Text Solution

    |

  16. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |

  17. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |

  18. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |

  19. "I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I2=int(-10...

    Text Solution

    |

  20. int(0)^(oo)(xdx)/((1+x)(1+x^(2)))

    Text Solution

    |