Home
Class 12
MATHS
The value of int1^e((tan^(-1)x)/x+(logx)...

The value of `int_1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s` `tane` (b) `tan^(-1)e` `tan^(-1)(1/e)` (d) none of these

A

`tane`

B

`tan^(-1)e`

C

`tan^(-1)(1//e)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_1^e \left( \frac{\tan^{-1} x}{x} + \frac{\log x}{1+x^2} \right) dx, \] we can break it down into two separate integrals: \[ I = \int_1^e \frac{\tan^{-1} x}{x} \, dx + \int_1^e \frac{\log x}{1+x^2} \, dx. \] Let's denote these two integrals as \( I_1 \) and \( I_2 \): \[ I_1 = \int_1^e \frac{\tan^{-1} x}{x} \, dx, \] \[ I_2 = \int_1^e \frac{\log x}{1+x^2} \, dx. \] ### Step 1: Evaluate \( I_2 \) using Integration by Parts For \( I_2 \), we will use integration by parts. Let: - \( u = \log x \) (then \( du = \frac{1}{x} \, dx \)) - \( dv = \frac{1}{1+x^2} \, dx \) (then \( v = \tan^{-1} x \)) Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du, \] we have: \[ I_2 = \left[ \log x \cdot \tan^{-1} x \right]_1^e - \int_1^e \tan^{-1} x \cdot \frac{1}{x} \, dx. \] ### Step 2: Evaluate the Boundary Terms Now we evaluate the boundary terms: \[ \left[ \log x \cdot \tan^{-1} x \right]_1^e = \log e \cdot \tan^{-1} e - \log 1 \cdot \tan^{-1} 1 = 1 \cdot \tan^{-1} e - 0 \cdot \frac{\pi}{4} = \tan^{-1} e. \] ### Step 3: Combine the Results Now substituting back into the expression for \( I_2 \): \[ I_2 = \tan^{-1} e - I_1. \] ### Step 4: Substitute \( I_2 \) Back into \( I \) Now substituting \( I_2 \) back into the expression for \( I \): \[ I = I_1 + I_2 = I_1 + \tan^{-1} e - I_1 = \tan^{-1} e. \] ### Final Result Thus, the value of the integral is: \[ I = \tan^{-1} e. \]

To solve the integral \[ I = \int_1^e \left( \frac{\tan^{-1} x}{x} + \frac{\log x}{1+x^2} \right) dx, \] we can break it down into two separate integrals: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_1^e((tan^(-1)x)/x+(logx)/(1+x^2))dx ,is (a) tane (b) tan^(-1)e (c) tan^(-1)(1/e) (d) none of these

int e^(tan^(-1)x) ((1+x+x^2)/(1+x^2))dx

Evaluate int (e^(m tan^(-1)x))/(1+x^(2))dx

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to cot^(-1)x (b) cot^(-1)1/x tan^(-1)x (d) none of these

Evaluate: int(e^tan^(-1)(x))/(1+x^2)\ dx

Integration of 1/(1+((log)_e x)^2) with respect to (log)_e x is (tan^(-1)((log)_e x)/x)+C (b) tan^(-1)((log)_e x)+C (c) (tan^(-1)x)/x+C (d) none of these

The value of int_(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(2)))dx is

The value of int_0^1e^(x^2-x)dx is (a) 1 (c) > e^(-1/4) (d)

Evaluate int_(log1//3)^(log3)tan((e^(x)-1)/(e^(x)+1))dx

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to (a) cot^(-1)x (b) cot^(-1)1/x (c) tan^(-1)x (d) none of these

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. If f(x)=cos(tan^(-1)x), then the value of the integral int(0)^(1)xf''(...

    Text Solution

    |

  2. The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)...

    Text Solution

    |

  3. The value of int1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s tane (b) tan^...

    Text Solution

    |

  4. If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))sin x dx=5, then f(0) is equal ...

    Text Solution

    |

  5. If int1^2e^(x^2)dx=a ,t h e ninte^(e^4)sqrt(1n x)dx is equal to (a)2e...

    Text Solution

    |

  6. If f(x) is continuous for all real values of x , then sum(r=1)^nint0^...

    Text Solution

    |

  7. The value of int0^(2) (3x ^ 2 −1)dx

    Text Solution

    |

  8. f(x) is a continuous function for all real values of x and satisfies i...

    Text Solution

    |

  9. If f(x)=int(-1)^(x)|t|dt, then for any xge0,f(x) equals

    Text Solution

    |

  10. If agt0 and A=int(0)^(a)cos^(-1)xdx, and int(-a)^(a)(cos^(-1)x-sin^(...

    Text Solution

    |

  11. The value of int1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,w h e r ea >1,a n ...

    Text Solution

    |

  12. int(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest i...

    Text Solution

    |

  13. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  14. The value of int(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes gre...

    Text Solution

    |

  15. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |

  16. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |

  17. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |

  18. "I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I2=int(-10...

    Text Solution

    |

  19. int(0)^(oo)(xdx)/((1+x)(1+x^(2)))

    Text Solution

    |

  20. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |