Home
Class 12
MATHS
If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))s...

If `f(pi)=2` and `int_(0)^(pi)(f(x)+f''(x))sin x dx=5`, then `f(0)` is equal to ( it is given that `f(x)` is continuous in `[0,pi]`)

A

7

B

3

C

5

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(0) \) given that \( f(\pi) = 2 \) and \[ \int_0^{\pi} (f(x) + f''(x)) \sin x \, dx = 5. \] ### Step-by-Step Solution 1. **Set up the integral:** We start with the integral given in the problem: \[ I = \int_0^{\pi} (f(x) + f''(x)) \sin x \, dx. \] 2. **Split the integral:** We can separate the integral into two parts: \[ I = \int_0^{\pi} f(x) \sin x \, dx + \int_0^{\pi} f''(x) \sin x \, dx. \] 3. **Evaluate the second integral using integration by parts:** For the second integral \( \int_0^{\pi} f''(x) \sin x \, dx \), we will use integration by parts. Let: - \( u = \sin x \) and \( dv = f''(x) \, dx \). - Then, \( du = \cos x \, dx \) and \( v = f'(x) \). Applying integration by parts: \[ \int f''(x) \sin x \, dx = f'(x) \sin x \bigg|_0^{\pi} - \int f'(x) \cos x \, dx. \] 4. **Evaluate the boundary terms:** At \( x = \pi \): \[ f'(\pi) \sin(\pi) = f'(\pi) \cdot 0 = 0. \] At \( x = 0 \): \[ f'(0) \sin(0) = f'(0) \cdot 0 = 0. \] Thus, the boundary terms contribute \( 0 \). 5. **Substituting back:** Now we have: \[ \int_0^{\pi} f''(x) \sin x \, dx = -\int_0^{\pi} f'(x) \cos x \, dx. \] 6. **Evaluate the integral \( \int_0^{\pi} f'(x) \cos x \, dx \) using integration by parts again:** Let: - \( u = \cos x \) and \( dv = f'(x) \, dx \). - Then, \( du = -\sin x \, dx \) and \( v = f(x) \). Applying integration by parts: \[ \int f'(x) \cos x \, dx = f(x) \cos x \bigg|_0^{\pi} + \int f(x) \sin x \, dx. \] 7. **Evaluate the boundary terms:** At \( x = \pi \): \[ f(\pi) \cos(\pi) = 2 \cdot (-1) = -2. \] At \( x = 0 \): \[ f(0) \cos(0) = f(0) \cdot 1 = f(0). \] Thus, the boundary terms contribute: \[ -2 + f(0). \] 8. **Putting it all together:** We have: \[ \int_0^{\pi} f''(x) \sin x \, dx = -(-2 + f(0)) + \int_0^{\pi} f(x) \sin x \, dx. \] Therefore, \[ I = \int_0^{\pi} f(x) \sin x \, dx + 2 - f(0) + \int_0^{\pi} f(x) \sin x \, dx. \] Simplifying gives: \[ I = 2\int_0^{\pi} f(x) \sin x \, dx + 2 - f(0). \] 9. **Setting the equation:** Since \( I = 5 \): \[ 2\int_0^{\pi} f(x) \sin x \, dx + 2 - f(0) = 5. \] Rearranging gives: \[ 2\int_0^{\pi} f(x) \sin x \, dx - f(0) = 3. \] 10. **Using the known value:** We can substitute \( f(\pi) = 2 \) into the equation: \[ 2 + f(0) = 5 \implies f(0) = 5 - 2 = 3. \] ### Final Answer: \[ f(0) = 3. \]

To solve the problem, we need to find \( f(0) \) given that \( f(\pi) = 2 \) and \[ \int_0^{\pi} (f(x) + f''(x)) \sin x \, dx = 5. \] ### Step-by-Step Solution ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If f(pi) = 2 int_0^pi (f(x)+f^(x)) sinx dx=5 , then f(0) is equal to (it is given that f(x) is continuous in [0,pi]) . (a) 7 (b) 3 (c) 5 (d) 1

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

Let f(x) = secx*f'(x), f(0) = 1, then f(pi/6) is equal to

int_(0)^(pi//2) ( f ( co x )) /( f (sinx ) + f(co sx) ) dx is equal to

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

The integral int_(0)^(pi//2) f(sin 2 x)sin x dx is equal to

The integral int_(0)^(pi) x f(sinx )dx is equal to

If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :

let f(a)=int_(0)^(a)ln(1+tan a tan x)dx then f'((pi)/(4)) equals

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)...

    Text Solution

    |

  2. The value of int1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s tane (b) tan^...

    Text Solution

    |

  3. If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))sin x dx=5, then f(0) is equal ...

    Text Solution

    |

  4. If int1^2e^(x^2)dx=a ,t h e ninte^(e^4)sqrt(1n x)dx is equal to (a)2e...

    Text Solution

    |

  5. If f(x) is continuous for all real values of x , then sum(r=1)^nint0^...

    Text Solution

    |

  6. The value of int0^(2) (3x ^ 2 −1)dx

    Text Solution

    |

  7. f(x) is a continuous function for all real values of x and satisfies i...

    Text Solution

    |

  8. If f(x)=int(-1)^(x)|t|dt, then for any xge0,f(x) equals

    Text Solution

    |

  9. If agt0 and A=int(0)^(a)cos^(-1)xdx, and int(-a)^(a)(cos^(-1)x-sin^(...

    Text Solution

    |

  10. The value of int1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,w h e r ea >1,a n ...

    Text Solution

    |

  11. int(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest i...

    Text Solution

    |

  12. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  13. The value of int(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes gre...

    Text Solution

    |

  14. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |

  15. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |

  16. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |

  17. "I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I2=int(-10...

    Text Solution

    |

  18. int(0)^(oo)(xdx)/((1+x)(1+x^(2)))

    Text Solution

    |

  19. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  20. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |