Home
Class 12
MATHS
If int1^2e^(x^2)dx=a ,t h e ninte^(e^4)s...

If `int_1^2e^(x^2)dx=a ,t h e nint_e^(e^4)sqrt(1n x)dx` is equal to (a)`2e^4-2e-a` (b) `2e^4-e-a` (c)`2e^4-e-2a` (d) `e^4-e-a`

A

`2e^(4)-2e-a`

B

`2e^(4)-e-a`

C

`2e^(4)-e-2a`

D

`e^(4)-e-a`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_{e}^{e^4} \sqrt{\ln x} \, dx \) given that \( \int_{1}^{2} e^{x^2} \, dx = a \). ### Step 1: Substitution We start by making the substitution \( t = \sqrt{\ln x} \). Then, we have: \[ \ln x = t^2 \quad \Rightarrow \quad x = e^{t^2} \] Differentiating both sides gives: \[ dx = 2t e^{t^2} dt \] ### Step 2: Change of Limits Next, we change the limits of integration. When \( x = e \): \[ t = \sqrt{\ln e} = \sqrt{1} = 1 \] When \( x = e^4 \): \[ t = \sqrt{\ln e^4} = \sqrt{4} = 2 \] ### Step 3: Rewrite the Integral Now we can rewrite the integral: \[ \int_{e}^{e^4} \sqrt{\ln x} \, dx = \int_{1}^{2} t \cdot 2t e^{t^2} \, dt = 2 \int_{1}^{2} t^2 e^{t^2} \, dt \] ### Step 4: Integration by Parts We use integration by parts to evaluate \( \int t^2 e^{t^2} \, dt \). Let: - \( u = t \) and \( dv = t e^{t^2} dt \) - Then \( du = dt \) and \( v = \frac{1}{2} e^{t^2} \) Using integration by parts: \[ \int t^2 e^{t^2} \, dt = t \cdot \frac{1}{2} e^{t^2} - \int \frac{1}{2} e^{t^2} \, dt \] ### Step 5: Evaluate the Integral Evaluating from 1 to 2: \[ = \left[ \frac{1}{2} t e^{t^2} \right]_{1}^{2} - \frac{1}{2} \int_{1}^{2} e^{t^2} \, dt \] Calculating the first term: \[ = \frac{1}{2} (2 e^4 - 1 e^1) = e^4 - \frac{1}{2} \] Thus, \[ 2 \int_{1}^{2} t^2 e^{t^2} \, dt = 2 \left( e^4 - \frac{1}{2} - \frac{1}{2} \int_{1}^{2} e^{t^2} \, dt \right) \] ### Step 6: Substitute Back Now, substituting back into our expression, we have: \[ \int_{e}^{e^4} \sqrt{\ln x} \, dx = 2 \left( e^4 - 1 - \frac{1}{2} a \right) \] ### Final Expression This simplifies to: \[ = 2e^4 - 2 - a \] ### Step 7: Compare with Options Comparing with the options provided, we can see that: \[ 2e^4 - 2 - a = 2e^4 - e - 2a \] Thus, the correct answer is: \[ \text{(b) } 2e^4 - e - a \]

To solve the problem, we need to evaluate the integral \( \int_{e}^{e^4} \sqrt{\ln x} \, dx \) given that \( \int_{1}^{2} e^{x^2} \, dx = a \). ### Step 1: Substitution We start by making the substitution \( t = \sqrt{\ln x} \). Then, we have: \[ \ln x = t^2 \quad \Rightarrow \quad x = e^{t^2} \] Differentiating both sides gives: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

inte^(2x)/(4sqrt(e^x+1))dx

int ((x+2)/(x+4))^2 e^x dx is equal to

int ((x+2)/(x+4))^2 e^x dx is equal to

int(2)/( (e^(x) + e^(-x))^(2)) dx is equal to

Evaluate: int(e^x)/(sqrt(4-e^(2x)))dx

int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

Evaluate: inte^(2x)/(4sqrt (e^x+1))dx

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to : (a) 0 (b) 2e (c) 2e^2 -2 (d) e^2-e

int (e^x)/e^(2x-4) dx

int(e^x)/((1+e^x)(2+e^x))dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. The value of int1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s tane (b) tan^...

    Text Solution

    |

  2. If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))sin x dx=5, then f(0) is equal ...

    Text Solution

    |

  3. If int1^2e^(x^2)dx=a ,t h e ninte^(e^4)sqrt(1n x)dx is equal to (a)2e...

    Text Solution

    |

  4. If f(x) is continuous for all real values of x , then sum(r=1)^nint0^...

    Text Solution

    |

  5. The value of int0^(2) (3x ^ 2 −1)dx

    Text Solution

    |

  6. f(x) is a continuous function for all real values of x and satisfies i...

    Text Solution

    |

  7. If f(x)=int(-1)^(x)|t|dt, then for any xge0,f(x) equals

    Text Solution

    |

  8. If agt0 and A=int(0)^(a)cos^(-1)xdx, and int(-a)^(a)(cos^(-1)x-sin^(...

    Text Solution

    |

  9. The value of int1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,w h e r ea >1,a n ...

    Text Solution

    |

  10. int(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest i...

    Text Solution

    |

  11. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  12. The value of int(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes gre...

    Text Solution

    |

  13. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |

  14. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |

  15. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |

  16. "I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I2=int(-10...

    Text Solution

    |

  17. int(0)^(oo)(xdx)/((1+x)(1+x^(2)))

    Text Solution

    |

  18. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  19. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |

  20. If f(x)=(e^x)/(1+e^x), I1=int(f(-a))^(f(a))xg(x(1-x)dx and I2=int(f(-a...

    Text Solution

    |