Home
Class 12
MATHS
If f(x) is continuous for all real value...

If `f(x)` is continuous for all real values of `x ,` then `sum_(r=1)^nint_0^1f(r-1+x)dx `is equal to (a)`int_0^nf(x)dx` (b) `int_0^1f(x)dx` (c)`int_0^1f(x)dx` (d) `(n-1)int_0^1f(x)dx`

A

`int_(0)^(n)f(x)dx`

B

`int_(0)^(1)f(x)dx`

C

`nint_(0)^(1)f(x)dx`

D

`(n-1)int_(0)^(1)f(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum \[ \sum_{r=1}^{n} \int_0^1 f(r-1+x) \, dx. \] ### Step 1: Rewrite the sum We can express the sum as follows: \[ \sum_{r=1}^{n} \int_0^1 f(r-1+x) \, dx = \int_0^1 f(0+x) \, dx + \int_0^1 f(1+x) \, dx + \int_0^1 f(2+x) \, dx + \ldots + \int_0^1 f((n-1)+x) \, dx. \] ### Step 2: Change of variable For each integral, we can perform a change of variable. Let \( u = r - 1 + x \). Then, when \( x = 0 \), \( u = r - 1 \) and when \( x = 1 \), \( u = r \). Thus, we can rewrite each integral: \[ \int_0^1 f(r-1+x) \, dx = \int_{r-1}^{r} f(u) \, du. \] ### Step 3: Combine the integrals Now, we can combine all these integrals: \[ \sum_{r=1}^{n} \int_{r-1}^{r} f(u) \, du = \int_0^1 f(u) \, du + \int_1^2 f(u) \, du + \int_2^3 f(u) \, du + \ldots + \int_{n-1}^{n} f(u) \, du. \] ### Step 4: Evaluate the total integral The total integral from \( 0 \) to \( n \) can be expressed as: \[ \int_0^n f(u) \, du. \] ### Conclusion Thus, we conclude that \[ \sum_{r=1}^{n} \int_0^1 f(r-1+x) \, dx = \int_0^n f(x) \, dx. \] Therefore, the answer is: \[ \text{(a) } \int_0^n f(x) \, dx. \] ---

To solve the problem, we need to evaluate the sum \[ \sum_{r=1}^{n} \int_0^1 f(r-1+x) \, dx. \] ### Step 1: Rewrite the sum We can express the sum as follows: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_0^(2a)f(x)dx is equal to a. 2int_0^af(x)dx b. 0 c. int_0^af(x)dx+int_0^af(2a-x)dx d. int_0^af(x)dx+int_0^(2a)f(2a-x)dx

Let f(x)=f(a-x) and g(x)+g(a-x)=4 then int_0^af(x)g(x)dx is equal to (A) 2int_0^af(x)dx (B) int_0^af(x)dx (C) 4int_0^af(x)dx (D) 0

The value of integral sum _(k=1)^(n) int _(0)^(1) f(k - 1+x) dx is

int_0^1 (x/(x+1))dx

int_0^a[f(x)+f(-x)]dx= (A) 0 (B) 2int_0^a f(x)dx (C) int_-a^a f(x)dx (D) none of these

Q. if int_0^100(f(x) dx = a , then sum_(r=1)^100(int_0^1( f(r-1+x)dx)) =

Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for all xa n df(x) is a function for which int_0^2f(x)dx=5,t h e nint_0^(50)f(x)dx is equal to (a)125 (b) int_(-4)^(46)f(x)dx (c) int_1^(51)f(x)dx (d) int_2^(52)f(x)dx

If int_0^af(2a-x)dx=m and int_0^af(x)dx=n, then int_0^(2a) f(x) dx is equal to

Prove that: int_0^(2a)f(x)dx=int_0^(2a)f(2a-x)dxdot

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))sin x dx=5, then f(0) is equal ...

    Text Solution

    |

  2. If int1^2e^(x^2)dx=a ,t h e ninte^(e^4)sqrt(1n x)dx is equal to (a)2e...

    Text Solution

    |

  3. If f(x) is continuous for all real values of x , then sum(r=1)^nint0^...

    Text Solution

    |

  4. The value of int0^(2) (3x ^ 2 −1)dx

    Text Solution

    |

  5. f(x) is a continuous function for all real values of x and satisfies i...

    Text Solution

    |

  6. If f(x)=int(-1)^(x)|t|dt, then for any xge0,f(x) equals

    Text Solution

    |

  7. If agt0 and A=int(0)^(a)cos^(-1)xdx, and int(-a)^(a)(cos^(-1)x-sin^(...

    Text Solution

    |

  8. The value of int1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,w h e r ea >1,a n ...

    Text Solution

    |

  9. int(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest i...

    Text Solution

    |

  10. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  11. The value of int(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes gre...

    Text Solution

    |

  12. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |

  13. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |

  14. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |

  15. "I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I2=int(-10...

    Text Solution

    |

  16. int(0)^(oo)(xdx)/((1+x)(1+x^(2)))

    Text Solution

    |

  17. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  18. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |

  19. If f(x)=(e^x)/(1+e^x), I1=int(f(-a))^(f(a))xg(x(1-x)dx and I2=int(f(-a...

    Text Solution

    |

  20. The value of int(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

    Text Solution

    |