Home
Class 12
MATHS
f(x) is a continuous function for all re...

`f(x)` is a continuous function for all real values of `x` and satisfies `int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot` Then `int_(-3)^5f(|x|)dx` is equal to `(19)/2` (b) `(35)/2` (c) `(17)/2` (d) none of these

A

`19//2`

B

`35//2`

C

`17//2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_{-3}^{5} f(|x|) \, dx \) given that \( f(x) \) is a continuous function satisfying the condition: \[ \int_{n}^{n+1} f(x) \, dx = \frac{n^2}{2} \quad \text{for all } n \in \mathbb{Z}. \] ### Step-by-step Solution: 1. **Understanding the Integral**: We start with the integral \( \int_{-3}^{5} f(|x|) \, dx \). Since \( |x| \) is an even function, we can split the integral into two parts: \[ \int_{-3}^{5} f(|x|) \, dx = \int_{-3}^{0} f(-x) \, dx + \int_{0}^{5} f(x) \, dx. \] 2. **Changing Variables**: For the first integral, we can make a substitution \( u = -x \), which gives \( du = -dx \). The limits change from \( x = -3 \) to \( x = 0 \) into \( u = 3 \) to \( u = 0 \). Thus: \[ \int_{-3}^{0} f(-x) \, dx = \int_{3}^{0} f(u) (-du) = \int_{0}^{3} f(u) \, du. \] 3. **Combining Integrals**: Now we can combine the two integrals: \[ \int_{-3}^{5} f(|x|) \, dx = \int_{0}^{3} f(x) \, dx + \int_{0}^{5} f(x) \, dx. \] 4. **Splitting the Integral**: We can split \( \int_{0}^{5} f(x) \, dx \) into two parts: \[ \int_{0}^{5} f(x) \, dx = \int_{0}^{3} f(x) \, dx + \int_{3}^{5} f(x) \, dx. \] Therefore: \[ \int_{-3}^{5} f(|x|) \, dx = \int_{0}^{3} f(x) \, dx + \left( \int_{0}^{3} f(x) \, dx + \int_{3}^{5} f(x) \, dx \right) = 2 \int_{0}^{3} f(x) \, dx + \int_{3}^{5} f(x) \, dx. \] 5. **Using the Given Condition**: Now we can evaluate the integrals using the given condition: - For \( n = 0 \): \[ \int_{0}^{1} f(x) \, dx = \frac{0^2}{2} = 0. \] - For \( n = 1 \): \[ \int_{1}^{2} f(x) \, dx = \frac{1^2}{2} = \frac{1}{2}. \] - For \( n = 2 \): \[ \int_{2}^{3} f(x) \, dx = \frac{2^2}{2} = 2. \] - For \( n = 3 \): \[ \int_{3}^{4} f(x) \, dx = \frac{3^2}{2} = \frac{9}{2}. \] - For \( n = 4 \): \[ \int_{4}^{5} f(x) \, dx = \frac{4^2}{2} = 8. \] 6. **Calculating the Total**: Now we can calculate: \[ \int_{0}^{3} f(x) \, dx = \int_{0}^{1} f(x) \, dx + \int_{1}^{2} f(x) \, dx + \int_{2}^{3} f(x) \, dx = 0 + \frac{1}{2} + 2 = \frac{5}{2}. \] Therefore: \[ 2 \int_{0}^{3} f(x) \, dx = 2 \cdot \frac{5}{2} = 5. \] And: \[ \int_{3}^{5} f(x) \, dx = \int_{3}^{4} f(x) \, dx + \int_{4}^{5} f(x) \, dx = \frac{9}{2} + 8 = \frac{25}{2}. \] 7. **Final Calculation**: Now we can combine everything: \[ \int_{-3}^{5} f(|x|) \, dx = 5 + \frac{25}{2} = \frac{10}{2} + \frac{25}{2} = \frac{35}{2}. \] ### Conclusion: Thus, the value of \( \int_{-3}^{5} f(|x|) \, dx \) is \( \frac{35}{2} \).

To solve the problem, we need to evaluate the integral \( \int_{-3}^{5} f(|x|) \, dx \) given that \( f(x) \) is a continuous function satisfying the condition: \[ \int_{n}^{n+1} f(x) \, dx = \frac{n^2}{2} \quad \text{for all } n \in \mathbb{Z}. \] ### Step-by-step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

f(x) is a continuous function for all real values of x and satisfies int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot Then int_(-3)^5f(|x|)dx is equal to (a) (19)/2 (b) (35)/2 (c) (17)/2 (d) none of these

int_n^(n+1)f(x) dx=n^2+n then int_(-1)^1 f(x) dx =

If int_0^af(2a-x)dx=m and int_0^af(x)dx=n, then int_0^(2a) f(x) dx is equal to

Let f: R rarr R be a continuous function given by f(x+y)=f(x)+f(y) for all x,y, in R, if int_0^2 f(x)dx=alpha, then int_-2^2 f(x) dx is equal to

Suppose for every integer n, .int_(n)^(n+1) f(x)dx = n^(2) . The value of int_(-2)^(4) f(x)dx is :

Let f(x) be a contiuous function such a int_n^(n+1) f(x)dx=n^3, n in Z. Then, the value of the intergral int_-3^3 f(x) dx (A) 9 (B) -27 (C) -9 (D) none of these

If f(a+x)=f(x), then int_(0)^(na) f(x)dx is equal to (n in N)

If f(x) is a continuous function defined on [0,\ 2a]dot\ Then prove that int_0^(2a)f(x)dx=int_0^a{f(x)+(2a-x)}dx

Let f(x) is a continuous function symmetric about the lines x=1a n dx=2. If int_0^(2)f(x)dx=3 and int_0^(50)f(x)=I , then [sqrt(I)] is equal to (where [.] is G.I.F.) (a) 5 (b) 8 (c) 7 (d) 6

If f(x) satisfies the condition of Rolle's theorem in [1,2] , then int_1^2 f'(x) dx is equal to (a) 1 (b) 3 (c) 0 (d) none of these

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. If f(x) is continuous for all real values of x , then sum(r=1)^nint0^...

    Text Solution

    |

  2. The value of int0^(2) (3x ^ 2 −1)dx

    Text Solution

    |

  3. f(x) is a continuous function for all real values of x and satisfies i...

    Text Solution

    |

  4. If f(x)=int(-1)^(x)|t|dt, then for any xge0,f(x) equals

    Text Solution

    |

  5. If agt0 and A=int(0)^(a)cos^(-1)xdx, and int(-a)^(a)(cos^(-1)x-sin^(...

    Text Solution

    |

  6. The value of int1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,w h e r ea >1,a n ...

    Text Solution

    |

  7. int(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest i...

    Text Solution

    |

  8. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  9. The value of int(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes gre...

    Text Solution

    |

  10. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |

  11. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |

  12. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |

  13. "I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I2=int(-10...

    Text Solution

    |

  14. int(0)^(oo)(xdx)/((1+x)(1+x^(2)))

    Text Solution

    |

  15. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  16. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |

  17. If f(x)=(e^x)/(1+e^x), I1=int(f(-a))^(f(a))xg(x(1-x)dx and I2=int(f(-a...

    Text Solution

    |

  18. The value of int(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

    Text Solution

    |

  19. The value of the definite integral int0^(pi/2)sqrt(tanx)dx is sqrt(...

    Text Solution

    |

  20. f(x)>0AAx in R and is bounded. If lim(n->oo)[int0^a(f(x)dx)/(f(x)+f(a...

    Text Solution

    |