Home
Class 12
MATHS
If f(x)=int(-1)^(x)|t|dt, then for any x...

If `f(x)=int_(-1)^(x)|t|dt`, then for any `xge0,f(x)` equals

A

`1/2(1-x^(2))`

B

`1/2x^(2)`

C

`1/2(1+x^(2))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( f(x) = \int_{-1}^{x} |t| \, dt \) for \( x \geq 0 \). ### Step-by-Step Solution: 1. **Understanding the Absolute Value**: The function \( |t| \) can be expressed piecewise: - For \( t < 0 \), \( |t| = -t \) - For \( t \geq 0 \), \( |t| = t \) 2. **Setting Up the Integral**: Since we are interested in the interval from \(-1\) to \(x\) and \(x \geq 0\), we can split the integral at \(0\): \[ f(x) = \int_{-1}^{0} |t| \, dt + \int_{0}^{x} |t| \, dt \] 3. **Calculating the First Integral**: For the first integral, from \(-1\) to \(0\): \[ \int_{-1}^{0} |t| \, dt = \int_{-1}^{0} -t \, dt \] Evaluating this: \[ = -\left[ \frac{t^2}{2} \right]_{-1}^{0} = -\left( 0 - \frac{(-1)^2}{2} \right) = -\left( 0 - \frac{1}{2} \right) = \frac{1}{2} \] 4. **Calculating the Second Integral**: For the second integral, from \(0\) to \(x\): \[ \int_{0}^{x} |t| \, dt = \int_{0}^{x} t \, dt \] Evaluating this: \[ = \left[ \frac{t^2}{2} \right]_{0}^{x} = \frac{x^2}{2} - 0 = \frac{x^2}{2} \] 5. **Combining the Results**: Now we combine both integrals: \[ f(x) = \frac{1}{2} + \frac{x^2}{2} \] This simplifies to: \[ f(x) = \frac{1 + x^2}{2} \] ### Final Answer: Thus, for any \( x \geq 0 \): \[ f(x) = \frac{1 + x^2}{2} \]

To solve the problem, we need to evaluate the integral \( f(x) = \int_{-1}^{x} |t| \, dt \) for \( x \geq 0 \). ### Step-by-Step Solution: 1. **Understanding the Absolute Value**: The function \( |t| \) can be expressed piecewise: - For \( t < 0 \), \( |t| = -t \) - For \( t \geq 0 \), \( |t| = t \) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = int_(-2)^(x)|t + 1|dt , then

Let f(x) = int_(0)^(x)|2t-3|dt , then f is

If f(x)=int_0^x tf(t)dt+2, then

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x)=int_0^x(sint)/t dt ,x >0, then

Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int_(1)^(x) (log t)/(1+t) dt Then F (e) equals

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. The value of int0^(2) (3x ^ 2 −1)dx

    Text Solution

    |

  2. f(x) is a continuous function for all real values of x and satisfies i...

    Text Solution

    |

  3. If f(x)=int(-1)^(x)|t|dt, then for any xge0,f(x) equals

    Text Solution

    |

  4. If agt0 and A=int(0)^(a)cos^(-1)xdx, and int(-a)^(a)(cos^(-1)x-sin^(...

    Text Solution

    |

  5. The value of int1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,w h e r ea >1,a n ...

    Text Solution

    |

  6. int(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest i...

    Text Solution

    |

  7. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  8. The value of int(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes gre...

    Text Solution

    |

  9. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |

  10. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |

  11. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |

  12. "I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I2=int(-10...

    Text Solution

    |

  13. int(0)^(oo)(xdx)/((1+x)(1+x^(2)))

    Text Solution

    |

  14. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  15. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |

  16. If f(x)=(e^x)/(1+e^x), I1=int(f(-a))^(f(a))xg(x(1-x)dx and I2=int(f(-a...

    Text Solution

    |

  17. The value of int(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

    Text Solution

    |

  18. The value of the definite integral int0^(pi/2)sqrt(tanx)dx is sqrt(...

    Text Solution

    |

  19. f(x)>0AAx in R and is bounded. If lim(n->oo)[int0^a(f(x)dx)/(f(x)+f(a...

    Text Solution

    |

  20. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,t h e nlambdai s...

    Text Solution

    |