Home
Class 12
MATHS
The value of int1^a[x]f^(prime)(x)dxf^(p...

The value of `int_1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,w h e r ea >1,a n d[x]` denotes the greatest integer not exceeding `x ,` is
`af(a)-{f(1)f(2)+...+f([a])}` `[a]f(a)-{f(1)+f(2)+...+f([a])}` `[a]f(a)-{f(1)+f(2)+...+fA}`
`af([a])-{f(1)+f(2)+...+fA}`

A

`af(a)-(f(1)+f(2)+………..+f([a]))`

B

`[a]f(a)-(f(1)+f(2))+………..+f([a]))`

C

`[a]f([a])-(f(1)+f(2)+………..+f(a))`

D

`af([a])-(f(1)+f(2)+…………+f(a))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral problem, we need to evaluate the integral \[ I = \int_1^a [x] f'(x) \, dx \] where \( [x] \) denotes the greatest integer not exceeding \( x \), and \( a > 1 \). ### Step 1: Break the Integral into Intervals Since \( [x] \) is a piecewise constant function, we can break the integral into intervals where \( [x] \) is constant. The greatest integer function \( [x] \) changes at each integer. Therefore, we can write: \[ I = \int_1^2 [x] f'(x) \, dx + \int_2^3 [x] f'(x) \, dx + \ldots + \int_{k}^{a} [x] f'(x) \, dx \] where \( k = [a] \). ### Step 2: Evaluate Each Integral On the interval \( [n, n+1) \) for \( n = 1, 2, \ldots, k-1 \), we have \( [x] = n \). Thus, we can rewrite the integral as: \[ I = \sum_{n=1}^{k-1} \int_n^{n+1} n f'(x) \, dx + \int_k^{a} k f'(x) \, dx \] ### Step 3: Simplify Each Integral For each integral \( \int_n^{n+1} n f'(x) \, dx \): \[ \int_n^{n+1} n f'(x) \, dx = n \left[ f(x) \right]_n^{n+1} = n (f(n+1) - f(n)) \] Thus, we can express \( I \) as: \[ I = \sum_{n=1}^{k-1} n (f(n+1) - f(n)) + k \int_k^{a} f'(x) \, dx \] ### Step 4: Evaluate the Last Integral The last integral can be evaluated as: \[ \int_k^{a} f'(x) \, dx = f(a) - f(k) \] ### Step 5: Combine Everything Now substituting back, we have: \[ I = \sum_{n=1}^{k-1} n (f(n+1) - f(n)) + k (f(a) - f(k)) \] ### Step 6: Recognize the Telescoping Nature The sum \( \sum_{n=1}^{k-1} n (f(n+1) - f(n)) \) can be simplified. This sum telescopes, leading to: \[ I = k f(a) - \sum_{n=1}^{k} f(n) \] where \( \sum_{n=1}^{k} f(n) = f(1) + f(2) + \ldots + f(k) \). ### Final Result Thus, we arrive at the final expression: \[ I = k f(a) - \sum_{n=1}^{k} f(n) \] Since \( k = [a] \), we can write: \[ I = [a] f(a) - \sum_{n=1}^{[a]} f(n) \] ### Conclusion The value of the integral is: \[ I = [a] f(a) - \{ f(1) + f(2) + \ldots + f([a]) \} \]

To solve the given integral problem, we need to evaluate the integral \[ I = \int_1^a [x] f'(x) \, dx \] where \( [x] \) denotes the greatest integer not exceeding \( x \), and \( a > 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_1^a[x]f^(prime)(x)dx ,where a >1 , and [x] denotes the greatest integer not exceeding x, is (A) af(a)-{f(1)f(2)+.....+f([a])} (B) [a]f(a)-{f(1)+f(2)+......+f([a])} (C) [a]f(a)-{f(1)+f(2)+.......+fA} (D) af([a])-{f(1)+f(2)+......+fA}

Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greatest integer function).Then f^-1 (x) is

The value of int_(-10)^(10)[{f(f(x)}+{f(f((1)/(x))}]dx , where f(x)=(1-x)/(1+x)

If f^(prime)(x)=3x^2-2/(x^3) and f(1)=0 , find f(x) .

If f^(prime)(x)=x+b ,f(1)=5,f(2)=13 , find f(x)dot

If f^(prime)(x)=x-1/(x^2) and f(1)=1/2 , find f(x) .

If f^(prime)(x)=x-1/(x^2) and f(1)=1/2 , find f(x) .

If f^(prime)(x)=x+b ,\ \ f(1)=5,\ \ f(2)=13 , find f(x) .

If y=f((2x-1)/(x^2+1)) and f^(prime)(x)=sinx^2 , find (dy)/(dx) .

Given f^(prime)(1)=1"and"d/(dx)(f(2x))=f^(prime)(x)AAx > 0 .If f^(prime)(x) is differentiable then there exies a number c in (2,4) such that f''(c) equals

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. If f(x)=int(-1)^(x)|t|dt, then for any xge0,f(x) equals

    Text Solution

    |

  2. If agt0 and A=int(0)^(a)cos^(-1)xdx, and int(-a)^(a)(cos^(-1)x-sin^(...

    Text Solution

    |

  3. The value of int1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,w h e r ea >1,a n ...

    Text Solution

    |

  4. int(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest i...

    Text Solution

    |

  5. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  6. The value of int(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes gre...

    Text Solution

    |

  7. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |

  8. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |

  9. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |

  10. "I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I2=int(-10...

    Text Solution

    |

  11. int(0)^(oo)(xdx)/((1+x)(1+x^(2)))

    Text Solution

    |

  12. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  13. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |

  14. If f(x)=(e^x)/(1+e^x), I1=int(f(-a))^(f(a))xg(x(1-x)dx and I2=int(f(-a...

    Text Solution

    |

  15. The value of int(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

    Text Solution

    |

  16. The value of the definite integral int0^(pi/2)sqrt(tanx)dx is sqrt(...

    Text Solution

    |

  17. f(x)>0AAx in R and is bounded. If lim(n->oo)[int0^a(f(x)dx)/(f(x)+f(a...

    Text Solution

    |

  18. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,t h e nlambdai s...

    Text Solution

    |

  19. The value of the definite integral int(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)...

    Text Solution

    |

  20. The value of the integral int(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi/...

    Text Solution

    |