Home
Class 12
MATHS
int(-1)^(2)[([x])/(1+x^(2))]dx, where [....

`int_(-1)^(2)[([x])/(1+x^(2))]dx`, where [.] denotes the greatest integer function, is equal to

A

`-2`

B

`-1`

C

zero

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-1}^{2} \frac{[x]}{1+x^2} \, dx \), where \([x]\) denotes the greatest integer function, we will break the integral into segments based on the behavior of the greatest integer function. ### Step 1: Identify intervals for the greatest integer function The greatest integer function \([x]\) takes different constant values in different intervals: - For \( x \in [-1, 0) \), \([x] = -1\) - For \( x \in [0, 1) \), \([x] = 0\) - For \( x \in [1, 2) \), \([x] = 1\) ### Step 2: Break the integral into segments We can break the integral \( I \) into three parts: \[ I = \int_{-1}^{0} \frac{[x]}{1+x^2} \, dx + \int_{0}^{1} \frac{[x]}{1+x^2} \, dx + \int_{1}^{2} \frac{[x]}{1+x^2} \, dx \] ### Step 3: Evaluate each segment #### Segment 1: \( \int_{-1}^{0} \frac{[x]}{1+x^2} \, dx \) For \( x \in [-1, 0) \), \([x] = -1\): \[ \int_{-1}^{0} \frac{-1}{1+x^2} \, dx = -\int_{-1}^{0} \frac{1}{1+x^2} \, dx \] The integral of \(\frac{1}{1+x^2}\) is \(\tan^{-1}(x)\): \[ -\left[ \tan^{-1}(x) \right]_{-1}^{0} = -\left( \tan^{-1}(0) - \tan^{-1}(-1) \right) = -\left( 0 - \left(-\frac{\pi}{4}\right) \right) = -\left( \frac{\pi}{4} \right) = -\frac{\pi}{4} \] #### Segment 2: \( \int_{0}^{1} \frac{[x]}{1+x^2} \, dx \) For \( x \in [0, 1) \), \([x] = 0\): \[ \int_{0}^{1} \frac{0}{1+x^2} \, dx = 0 \] #### Segment 3: \( \int_{1}^{2} \frac{[x]}{1+x^2} \, dx \) For \( x \in [1, 2) \), \([x] = 1\): \[ \int_{1}^{2} \frac{1}{1+x^2} \, dx = \left[ \tan^{-1}(x) \right]_{1}^{2} = \tan^{-1}(2) - \tan^{-1}(1) = \tan^{-1}(2) - \frac{\pi}{4} \] ### Step 4: Combine the results Now, we can combine all the segments: \[ I = -\frac{\pi}{4} + 0 + \left( \tan^{-1}(2) - \frac{\pi}{4} \right) \] \[ I = \tan^{-1}(2) - \frac{\pi}{2} \] ### Final Result Thus, the value of the integral is: \[ I = \tan^{-1}(2) - \frac{\pi}{2} \]

To solve the integral \( I = \int_{-1}^{2} \frac{[x]}{1+x^2} \, dx \), where \([x]\) denotes the greatest integer function, we will break the integral into segments based on the behavior of the greatest integer function. ### Step 1: Identify intervals for the greatest integer function The greatest integer function \([x]\) takes different constant values in different intervals: - For \( x \in [-1, 0) \), \([x] = -1\) - For \( x \in [0, 1) \), \([x] = 0\) - For \( x \in [1, 2) \), \([x] = 1\) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

The value of int_1^2(x^([x^2])+[x^2]^x)dx , where [.] denotes the greatest integer function, is equal to

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

int_(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest integer function, is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. The value of int1^a[x]f^(prime)(x)dxf^(prime)(x)dx ,w h e r ea >1,a n ...

    Text Solution

    |

  2. int(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest i...

    Text Solution

    |

  3. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  4. The value of int(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes gre...

    Text Solution

    |

  5. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |

  6. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |

  7. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |

  8. "I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I2=int(-10...

    Text Solution

    |

  9. int(0)^(oo)(xdx)/((1+x)(1+x^(2)))

    Text Solution

    |

  10. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  11. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |

  12. If f(x)=(e^x)/(1+e^x), I1=int(f(-a))^(f(a))xg(x(1-x)dx and I2=int(f(-a...

    Text Solution

    |

  13. The value of int(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

    Text Solution

    |

  14. The value of the definite integral int0^(pi/2)sqrt(tanx)dx is sqrt(...

    Text Solution

    |

  15. f(x)>0AAx in R and is bounded. If lim(n->oo)[int0^a(f(x)dx)/(f(x)+f(a...

    Text Solution

    |

  16. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,t h e nlambdai s...

    Text Solution

    |

  17. The value of the definite integral int(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)...

    Text Solution

    |

  18. The value of the integral int(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi/...

    Text Solution

    |

  19. I(1)=int(0)^((pi)/2)Ln (sinx)dx, I(2)=int(-pi//4)^(pi//4)Ln(sinx+cosx)...

    Text Solution

    |

  20. IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I2=int0^(pi/2)(sin^2x)/(1+sin^2...

    Text Solution

    |