Home
Class 12
MATHS
The value of int(-2)^1 [x[1+cos((pix)/2)...

The value of `int_(-2)^1 [x[1+cos((pix)/2)]+1] dx,` where [.] denotes greatest integer function is

A

`1`

B

`1//2`

C

`2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-2}^{1} \left[ x \left( 1 + \cos\left(\frac{\pi x}{2}\right) \right) + 1 \right] \, dx \), where \([.]\) denotes the greatest integer function, we will break it down step by step. ### Step 1: Analyze the function The integrand is \( [x(1 + \cos(\frac{\pi x}{2})) + 1] \). We need to find the values of \( x \) in the interval \([-2, 1]\) and determine the greatest integer function for those values. ### Step 2: Determine the range of \( x \) The interval we are integrating over is from \(-2\) to \(1\). We will evaluate the function \( 1 + \cos\left(\frac{\pi x}{2}\right) \) within this interval. ### Step 3: Evaluate \( 1 + \cos\left(\frac{\pi x}{2}\right) \) - At \( x = -2 \): \[ \cos\left(\frac{\pi \cdot -2}{2}\right) = \cos(-\pi) = -1 \implies 1 + \cos(-\pi) = 0 \] - At \( x = -1 \): \[ \cos\left(\frac{\pi \cdot -1}{2}\right) = \cos(-\frac{\pi}{2}) = 0 \implies 1 + \cos(-\frac{\pi}{2}) = 1 \] - At \( x = 0 \): \[ \cos\left(\frac{\pi \cdot 0}{2}\right) = \cos(0) = 1 \implies 1 + \cos(0) = 2 \] - At \( x = 1 \): \[ \cos\left(\frac{\pi \cdot 1}{2}\right) = \cos(\frac{\pi}{2}) = 0 \implies 1 + \cos(\frac{\pi}{2}) = 1 \] ### Step 4: Determine the greatest integer function values Now we can evaluate \( [x(1 + \cos(\frac{\pi x}{2})) + 1] \) at key points: - For \( x \in [-2, -1) \): \[ [x(0) + 1] = [1] = 1 \] - For \( x \in [-1, 0) \): \[ [x(1) + 1] = [x + 1] \text{ where } x \in [-1, 0) \implies [0, 1) \text{ which gives } [0] = 0 \] - For \( x \in [0, 1] \): \[ [x(2) + 1] = [2x + 1] \text{ where } x \in [0, 1] \implies [1, 3) \text{ which gives } [1] = 1 \] ### Step 5: Set up the integral Now we can break the integral into segments based on the greatest integer values: \[ \int_{-2}^{-1} 1 \, dx + \int_{-1}^{0} 0 \, dx + \int_{0}^{1} 1 \, dx \] ### Step 6: Calculate each integral 1. \( \int_{-2}^{-1} 1 \, dx = [x]_{-2}^{-1} = -1 - (-2) = 1 \) 2. \( \int_{-1}^{0} 0 \, dx = 0 \) 3. \( \int_{0}^{1} 1 \, dx = [x]_{0}^{1} = 1 - 0 = 1 \) ### Step 7: Combine the results Adding these results together: \[ 1 + 0 + 1 = 2 \] ### Final Answer The value of the integral is \( \boxed{2} \). ---

To solve the integral \( \int_{-2}^{1} \left[ x \left( 1 + \cos\left(\frac{\pi x}{2}\right) \right) + 1 \right] \, dx \), where \([.]\) denotes the greatest integer function, we will break it down step by step. ### Step 1: Analyze the function The integrand is \( [x(1 + \cos(\frac{\pi x}{2})) + 1] \). We need to find the values of \( x \) in the interval \([-2, 1]\) and determine the greatest integer function for those values. ### Step 2: Determine the range of \( x \) The interval we are integrating over is from \(-2\) to \(1\). We will evaluate the function \( 1 + \cos\left(\frac{\pi x}{2}\right) \) within this interval. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-2)^1[x[1+cos((pix)/2)]+1]dx , where [.] denotes the greatest integer function, is (a)1 (b) 1//2 (c) 2 (d) none of these

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

The value of int_1^2(x^([x^2])+[x^2]^x)dx , where [.] denotes the greatest integer function, is equal to

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. int(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest i...

    Text Solution

    |

  2. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  3. The value of int(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes gre...

    Text Solution

    |

  4. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |

  5. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |

  6. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |

  7. "I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I2=int(-10...

    Text Solution

    |

  8. int(0)^(oo)(xdx)/((1+x)(1+x^(2)))

    Text Solution

    |

  9. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  10. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |

  11. If f(x)=(e^x)/(1+e^x), I1=int(f(-a))^(f(a))xg(x(1-x)dx and I2=int(f(-a...

    Text Solution

    |

  12. The value of int(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

    Text Solution

    |

  13. The value of the definite integral int0^(pi/2)sqrt(tanx)dx is sqrt(...

    Text Solution

    |

  14. f(x)>0AAx in R and is bounded. If lim(n->oo)[int0^a(f(x)dx)/(f(x)+f(a...

    Text Solution

    |

  15. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,t h e nlambdai s...

    Text Solution

    |

  16. The value of the definite integral int(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)...

    Text Solution

    |

  17. The value of the integral int(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi/...

    Text Solution

    |

  18. I(1)=int(0)^((pi)/2)Ln (sinx)dx, I(2)=int(-pi//4)^(pi//4)Ln(sinx+cosx)...

    Text Solution

    |

  19. IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I2=int0^(pi/2)(sin^2x)/(1+sin^2...

    Text Solution

    |

  20. Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |