Home
Class 12
MATHS
The value of int0^(2pi)[2 sin x] dx, w...

The value of `int_0^(2pi)[2 sin x] dx`, where `[.]` represents the greatest integral functions, is

A

`(-5pi)/3`

B

`-pi`

C

`(5pi)/3`

D

`-2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^{2\pi} \lfloor 2 \sin x \rfloor \, dx \), where \( \lfloor . \rfloor \) represents the greatest integer function, we will follow these steps: ### Step 1: Analyze the function \( 2 \sin x \) The function \( 2 \sin x \) oscillates between -2 and 2. We need to find the intervals where \( 2 \sin x \) takes specific integer values. ### Step 2: Identify the critical points The sine function has specific points where it reaches its maximum and minimum values: - \( \sin x = 1 \) at \( x = \frac{\pi}{2} \) - \( \sin x = 0 \) at \( x = 0, \pi, 2\pi \) - \( \sin x = -1 \) at \( x = \frac{3\pi}{2} \) From this, we can see: - \( 2 \sin x = 2 \) at \( x = \frac{\pi}{2} \) - \( 2 \sin x = 0 \) at \( x = 0, \pi, 2\pi \) - \( 2 \sin x = -2 \) at \( x = \frac{3\pi}{2} \) ### Step 3: Determine the intervals for \( \lfloor 2 \sin x \rfloor \) 1. **Interval \( [0, \frac{\pi}{2}] \)**: - \( 2 \sin x \) ranges from 0 to 2. - \( \lfloor 2 \sin x \rfloor = 0 \) for \( x \in [0, \frac{\pi}{6}) \) and \( \lfloor 2 \sin x \rfloor = 1 \) for \( x \in [\frac{\pi}{6}, \frac{\pi}{2}] \). 2. **Interval \( [\frac{\pi}{2}, \pi] \)**: - \( 2 \sin x \) decreases from 2 to 0. - \( \lfloor 2 \sin x \rfloor = 1 \) for \( x \in [\frac{\pi}{2}, \frac{5\pi}{6}) \) and \( \lfloor 2 \sin x \rfloor = 0 \) for \( x \in [\frac{5\pi}{6}, \pi] \). 3. **Interval \( [\pi, \frac{3\pi}{2}] \)**: - \( 2 \sin x \) decreases from 0 to -2. - \( \lfloor 2 \sin x \rfloor = 0 \) for \( x \in [\pi, \frac{7\pi}{6}) \) and \( \lfloor 2 \sin x \rfloor = -1 \) for \( x \in [\frac{7\pi}{6}, \frac{3\pi}{2}] \). 4. **Interval \( [\frac{3\pi}{2}, 2\pi] \)**: - \( 2 \sin x \) increases from -2 to 0. - \( \lfloor 2 \sin x \rfloor = -1 \) for \( x \in [\frac{3\pi}{2}, \frac{11\pi}{6}) \) and \( \lfloor 2 \sin x \rfloor = 0 \) for \( x \in [\frac{11\pi}{6}, 2\pi] \). ### Step 4: Set up the integral Now we can break the integral into parts based on the intervals we found: \[ \int_0^{2\pi} \lfloor 2 \sin x \rfloor \, dx = \int_0^{\frac{\pi}{6}} 0 \, dx + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} 1 \, dx + \int_{\frac{\pi}{2}}^{\frac{5\pi}{6}} 1 \, dx + \int_{\frac{5\pi}{6}}^{\pi} 0 \, dx + \int_{\pi}^{\frac{7\pi}{6}} 0 \, dx + \int_{\frac{7\pi}{6}}^{\frac{3\pi}{2}} -1 \, dx + \int_{\frac{3\pi}{2}}^{\frac{11\pi}{6}} -1 \, dx + \int_{\frac{11\pi}{6}}^{2\pi} 0 \, dx \] ### Step 5: Calculate each integral 1. \( \int_0^{\frac{\pi}{6}} 0 \, dx = 0 \) 2. \( \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2} - \frac{\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{3} \) 3. \( \int_{\frac{\pi}{2}}^{\frac{5\pi}{6}} 1 \, dx = \frac{5\pi}{6} - \frac{\pi}{2} = \frac{5\pi}{6} - \frac{3\pi}{6} = \frac{2\pi}{6} = \frac{\pi}{3} \) 4. \( \int_{\frac{5\pi}{6}}^{\pi} 0 \, dx = 0 \) 5. \( \int_{\pi}^{\frac{7\pi}{6}} 0 \, dx = 0 \) 6. \( \int_{\frac{7\pi}{6}}^{\frac{3\pi}{2}} -1 \, dx = -\left(\frac{3\pi}{2} - \frac{7\pi}{6}\right) = -\left(\frac{9\pi}{6} - \frac{7\pi}{6}\right) = -\frac{2\pi}{6} = -\frac{\pi}{3} \) 7. \( \int_{\frac{3\pi}{2}}^{\frac{11\pi}{6}} -1 \, dx = -\left(\frac{11\pi}{6} - \frac{3\pi}{2}\right) = -\left(\frac{11\pi}{6} - \frac{9\pi}{6}\right) = -\frac{2\pi}{6} = -\frac{\pi}{3} \) 8. \( \int_{\frac{11\pi}{6}}^{2\pi} 0 \, dx = 0 \) ### Step 6: Combine the results Now we combine all the results: \[ \int_0^{2\pi} \lfloor 2 \sin x \rfloor \, dx = 0 + \frac{\pi}{3} + \frac{\pi}{3} + 0 + 0 - \frac{\pi}{3} - \frac{\pi}{3} + 0 = 0 \] ### Final Answer The value of \( \int_0^{2\pi} \lfloor 2 \sin x \rfloor \, dx \) is \( 0 \).

To solve the integral \( \int_0^{2\pi} \lfloor 2 \sin x \rfloor \, dx \), where \( \lfloor . \rfloor \) represents the greatest integer function, we will follow these steps: ### Step 1: Analyze the function \( 2 \sin x \) The function \( 2 \sin x \) oscillates between -2 and 2. We need to find the intervals where \( 2 \sin x \) takes specific integer values. ### Step 2: Identify the critical points The sine function has specific points where it reaches its maximum and minimum values: - \( \sin x = 1 \) at \( x = \frac{\pi}{2} \) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_0^(2pi)[2sinx]dx ,w h e r e[dot] represents the greatest integral function, is (a) (-5pi)/3 (b) -pi (c) (5pi)/3 (d) -2pi

The value of int_(pi)^(2pi)[2sinx]dx is equal to (where [.] represents the greatest integer function)

Evaluate: int_0^(2pi)[sinx]dx ,where [dot] denotes the greatest integer function.

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

Evaluate: int_0^(100)x-[x]dx where [dot] represents the greatest integer function).

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. int(-1)^(2)[([x])/(1+x^(2))]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  2. The value of int(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes gre...

    Text Solution

    |

  3. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |

  4. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |

  5. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |

  6. "I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I2=int(-10...

    Text Solution

    |

  7. int(0)^(oo)(xdx)/((1+x)(1+x^(2)))

    Text Solution

    |

  8. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  9. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |

  10. If f(x)=(e^x)/(1+e^x), I1=int(f(-a))^(f(a))xg(x(1-x)dx and I2=int(f(-a...

    Text Solution

    |

  11. The value of int(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

    Text Solution

    |

  12. The value of the definite integral int0^(pi/2)sqrt(tanx)dx is sqrt(...

    Text Solution

    |

  13. f(x)>0AAx in R and is bounded. If lim(n->oo)[int0^a(f(x)dx)/(f(x)+f(a...

    Text Solution

    |

  14. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,t h e nlambdai s...

    Text Solution

    |

  15. The value of the definite integral int(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)...

    Text Solution

    |

  16. The value of the integral int(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi/...

    Text Solution

    |

  17. I(1)=int(0)^((pi)/2)Ln (sinx)dx, I(2)=int(-pi//4)^(pi//4)Ln(sinx+cosx)...

    Text Solution

    |

  18. IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I2=int0^(pi/2)(sin^2x)/(1+sin^2...

    Text Solution

    |

  19. Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  20. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |